
Lecture Notes on Computational Complexity

Luca Trevisan1

Notes written in Fall 2002, Revised May 2004

1Computer Science Division, U.C. Berkeley. Work supported by NSF Grant No. 9984703. Email
luca@cs.berkeley.edu.

Foreword

These are scribed notes from a graduate courses on Computational Complexity offered at
the University of California at Berkeley in the Fall of 2002, based on notes scribed by
students in Spring 2001 and on additional notes scribed in Fall 2002. I added notes and
references in May 2004.

The first 15 lectures cover fundamental material. The remaining lectures cover more
advanced material, that is different each time I teach the class. In these Fall 2002 notes,
there are lectures on H̊astad’s optimal inapproximability results, lower bounds for parity in
bounded depth-circuits, lower bounds in proof-complexity, and pseudorandom generators
and extractors.

The notes have been only minimally edited, and there may be several errors and impre-
cisions.

I will be happy to receive comments, criticism and corrections about these notes.
The syllabus for the course was developed jointly with Sanjeev Arora. Sanjeev wrote

the notes on Yao’s XOR Lemma (Lecture 11). Many people, and especially Avi Wigderson,
were kind enough to answer my questions about various topics covered in these notes.

I wish to thank the scribes Scott Aaronson, Andrej Bogdanov, Allison Coates, Kama-
lika Chaudhuri, Steve Chien, Jittat Fakcharoenphol, Chris Harrelson, Iordanis Kerenidis,
Lawrence Ip, Ranjit Jhala, François Labelle, John Leen, Michael Manapat, Manikandan
Narayanan, Mark Pilloff, Vinayak Prabhu, Samantha Riesenfeld, Stephen Sorkin, Kunal
Talwar, Jason Waddle, Dror Weitz, Beini Zhou.

Berkeley, May 2004.

Luca Trevisan
luca@cs.berkeley.edu

1

Contents

1 Introduction, P and NP 7
1.1 Computational Problems . 7
1.2 P and NP . 8
1.3 NP-completeness . 9

1.3.1 Reductions . 9
1.3.2 NP-completeness . 9
1.3.3 An NP-complete problem . 10
1.3.4 The Problem SAT . 10

1.4 Diagonalization . 11
1.5 References . 12

2 Space-Bounded Complexity Classes 14
2.1 Space-Bounded Complexity Classes . 14
2.2 Reductions in NL . 15
2.3 NL Completeness . 16
2.4 Savitch’s Theorem . 17
2.5 Undirected Connectivity . 18
2.6 Randomized Log-space . 18
2.7 NL = coNL . 20

2.7.1 A simpler problem first . 20
2.7.2 Finding r . 21

3 The Polynomial Hierarchy 23
3.1 Stacks of quantifiers . 23
3.2 The hierarchy . 24
3.3 An alternate characterization . 24
3.4 Additional Properties . 25
3.5 References . 26

4 Circuits 28
4.1 Circuits . 28
4.2 Relation to other complexity classes . 29
4.3 References . 33

2

5 Probabilistic Complexity Classes 35
5.1 Probabilistic complexity classes . 35
5.2 Relations between complexity classes . 36
5.3 BPP⊆ Σ2 . 40
5.4 References . 41

6 A Probabilistic Algorithm 43
6.1 Branching Programs . 43
6.2 Testing Equivalence . 44
6.3 The Schwartz-Zippel Lemma . 45
6.4 References . 45

7 Unique-SAT 47
7.1 The Valiant-Vazirani Reduction . 47
7.2 References . 49

8 Counting Problems 51
8.1 Counting Classes . 51
8.2 Complexity of counting problems . 52
8.3 An approximate comparison procedure . 53
8.4 Constructing a-comp . 54
8.5 The proof of the Leftover Hash Lemma . 55
8.6 Approximate Sampling . 56
8.7 References . 57

9 Average-Case Complexity of the Permanent 58
9.1 The Permanent Problem . 58
9.2 Worst-case to Average-case Equivalence . 59
9.3 References . 60

10 Average-case Complexity of Problems in PSPACE and EXP 61
10.1 Average-case Complexity in PSPACE and EXP for 7/8 Fraction of Inputs 61
10.2 Coding-Theoretic Perspective . 62
10.3 Average-case Complexity in PSPACE and EXP for 1/2 Fraction of Inputs 64
10.4 References . 66

11 The XOR Lemma 68
11.1 The XOR Lemma . 68
11.2 References . 70

12 Levin’s Theory of Average-case Complexity 72
12.1 Distributional Problems . 72
12.2 DistNP . 73
12.3 Reductions . 73
12.4 Polynomial-Time on Average . 74
12.5 Existence of Complete Problems . 77

3

12.6 Polynomial-Time Samplability . 78
12.7 References . 79

13 Interactive Proofs 81
13.1 Interactive Proofs . 81

13.1.1 NP+ Interaction = NP . 82
13.1.2 NP + Randomness . 83

13.2 IP . 83
13.3 An Example: Graph Non-Isomorphism 84
13.4 Random Self-Reductions . 85
13.5 References . 87

14 IP=PSPACE 89
14.1 UNSAT ⊆ IP . 89
14.2 A Proof System for #SAT . 91
14.3 A Proof System for QBF . 92

14.3.1 PSPACE-Complete Language: TQBF 92
14.3.2 Arithmetization of TQBF . 92
14.3.3 The Interactive Protocol . 95
14.3.4 Analysis . 96

15 Introduction to PCP 98
15.1 Probabilistically Checkable Proofs . 98
15.2 PCP and MAX-3SAT . 98

15.2.1 Approximability . 98
15.2.2 Inapproximability . 99
15.2.3 Tighter result . 100

15.3 Max Clique . 100
15.3.1 Approximability . 100
15.3.2 Inapproximability . 101

15.4 References . 101

16 H̊astad’s Proof System 102
16.1 H̊astad’s verifier . 102
16.2 Applications to hardness of approximation 103
16.3 From the PCP theorem to Raz’s verifier . 105
16.4 References . 106

17 Linearity Test 107
17.1 Fourier analysis of Boolean functions . 107
17.2 Using Fourier analysis to test linearity . 110
17.3 Testing code words for the Long Code . 111

17.3.1 Pre-H̊astad verification . 111
17.3.2 The Long Code test . 112

17.4 References . 112

4

18 Testing the Long Code 114
18.1 Test for Long Code . 114
18.2 H̊astad’s verifier . 115

19 Circuit Lower Bounds for Parity Using Polynomials 119
19.1 Circuit Lower Bounds for PARITY . 119
19.2 Proof of Circuit Lower Bounds for PARITY using Polynomials 120
19.3 Approximating OR . 122
19.4 References . 124

20 Lower Bound for Parity Using Random Restrictions 125
20.1 Random Restrictions . 125
20.2 H̊astad’s Result . 129
20.3 References . 132

21 Proof Complexity 133
21.1 Resolution Proof System . 134
21.2 Width of a Resolution Proof . 136
21.3 References . 138

22 Lower Bounds on Resolution Proof Length 139
22.1 Width and Proof Complexity . 139

22.1.1 The Main Theorem . 139
22.1.2 Proof of the technical lemmas . 140

22.2 Width Lower Bounds . 142
22.2.1 The Setting . 142
22.2.2 Matching and Satisfiability . 143
22.2.3 Putting them together . 145

22.3 References . 147

23 Pseudorandomness and Derandomization 148
23.1 Probabilistic Algorithms versus Deterministic Algorithms 148

23.1.1 A trivial deterministic simulation . 149
23.1.2 Exponential gaps between randomized and deterministic procedures 149

23.2 De-randomization Under Complexity Assumptions 150
23.2.1 Formal Definitions of Complexity Measures and Complexity Classes 151
23.2.2 Hardness versus Randomness . 151

23.3 Pseudorandom Generators . 152
23.4 The two main theorems . 153

23.4.1 The Nisan-Wigderson Theorem . 153
23.4.2 Worst-case to Average-case Reduction 154

24 The Nisan-Wigderson Generator 155
24.1 The Nisan-Wigderson Construction . 155

24.1.1 Impredictability versus Pseudorandomness 155
24.1.2 Combinatorial Designs . 156

5

24.1.3 The Nisan-Wigderson Generator . 157
24.2 The Reduction from Distinguishing to Predicting 157

25 Extractors and Pseudorandom Generators 160
25.1 Use of Weak Random Sources . 160
25.2 Extractors . 161
25.3 Applications . 161
25.4 An Extractor from Nisan-Wigderson . 162

6

Lecture 1

Introduction, P and NP

This course assumes CS170, or equivalent, as a prerequisite. We will assume that the reader
is familiar with the notions of algorithm and running time, as well as with basic notions of
discrete math and probability.

A main objective of theoretical computer science is to understand the amount of re-
sources (time, memory, communication, randomness , . . .) needed to solve computational
problems that we care about. While the design and analysis of algorithms puts upper
bounds on such amounts, computational complexity theory is mostly concerned with lower
bounds; that is we look for negative results showing that certain problems require a lot of
time, memory, etc., to be solved. In particular, we are interested in infeasible problems,
that is computational problems that require impossibly large resources to be solved, even
on instances of moderate size. It is very hard to show that a particular problem is infeasible,
and in fact for a lot of interesting problems the question of their feasibility is still open.
Another major line of work in complexity is in understanding the relations between different
computational problems and between different “modes” of computation. For example what
is the relative power of algorithms using randomness and deterministic algorithms, what is
the relation between worst-case and average-case complexity, how easier can we make an
optimization problem if we only look for approximate solutions, and so on. It is in this
direction that we find the most beautiful, and often surprising, known results in complexity
theory.

Before going any further, let us be more precise in saying what a computational problem
is, and let us define some important classes of computational problems. Then we will see a
particular incarnation of the notion of “reduction,” the main tool in complexity theory, and
we will introduce NP-completeness, one of the great success stories of complexity theory.
We conclude by demonstrating the use of diagonalization to show some separations between
complexity classes. It is unlikely that such techniques will help solving the P versus NP
problem.

1.1 Computational Problems

In a computational problem, we are given an input that, without loss of generality, we assume
to be encoded over the alphabet {0, 1}, and we want to return in output a solution satisfying

7

some property: a computational problem is then described by the property that the output
has to satisfy given the input.

In this course we will deal with four types of computational problems: decision problems,
search problems, optimization problems, and counting problems.1 For the moment, we will
discuss decision and search problem.

In a decision problem, given an input x ∈ {0, 1}∗, we are required to give a YES/NO
answer. That is, in a decision problem we are only asked to verify whether the input
satisfies a certain property. An example of decision problem is the 3-coloring problem:
given an undirected graph, determine whether there is a way to assign a “color” chosen
from {1, 2, 3} to each vertex in such a way that no two adjacent vertices have the same
color.

A convenient way to specify a decision problem is to give the set L ⊆ {0, 1}∗ of inputs
for which the answer is YES. A subset of {0, 1}∗ is also called a language, so, with the
previous convention, every decision problem can be specified using a language (and every
language specifies a decision problem). For example, if we call 3COL the subset of {0, 1}∗
containing (descriptions of) 3-colorable graphs, then 3COL is the language that specifies
the 3-coloring problem. From now on, we will talk about decision problems and languages
interchangeably.

In a search problem, given an input x ∈ {0, 1}∗ we want to compute some answer
y ∈ {0, 1}∗ that is in some relation to x, if such a y exists. Thus, a search problem
is specified by a relation R ⊆ {0, 1}∗ × {0, 1}∗, where (x, y) ∈ R if and only if y is an
admissible answer given x.

Consider for example the search version of the 3-coloring problem: here given an undi-
rected graph G = (V,E) we want to find, if it exists, a coloring c : V → {1, 2, 3} of the
vertices, such that for every (u, v) ∈ V we have c(u) 6= c(v). This is different (and more de-
manding) than the decision version, because beyond being asked to determine whether such
a c exists, we are also asked to construct it, if it exists. Formally, the 3-coloring problem is
specified by the relation R3COL that contains all the pairs (G, c) where G is a 3-colorable
graph and c is a valid 3-coloring of G.

1.2 P and NP

In most of this course, we will study the asymptotic complexity of problems. Instead of
considering, say, the time required to solve 3-coloring on graphs with 10, 000 nodes on some
particular model of computation, we will ask what is the best asymptotic running time of
an algorithm that solves 3-coloring on all instances. In fact, we will be much less ambitious,
and we will just ask whether there is a “feasible” asymptotic algorithm for 3-coloring. Here
feasible refers more to the rate of growth than to the running time of specific instances of
reasonable size.

A standard convention is to call an algorithm “feasible” if it runs in polynomial time,
i.e. if there is some polynomial p such that the algorithm runs in time at most p(n) on
inputs of length n.

1This distinction is useful and natural, but it is also arbitrary: in fact every problem can be seen as a
search problem

8

We denote by P the class of decision problems that are solvable in polynomial time.
We say that a search problem defined by a relation R is a NP search problem if the

relation is efficiently computable and such that solutions, if they exist, are short. Formally,
R is an NP search problem if there is a polynomial time algorithm that, given x and y,
decides whether (x, y) ∈ R, and if there is a polynomial p such that if (x, y) ∈ R then
|y| ≤ p(|x|).

We say that a decision problem L is anNP decision problem if there is someNP relation
R such that x ∈ L if and only if there is a y such that (x, y) ∈ R. Equivalently, a decision
problem L is an NP decision problem if there is a polynomial time algorithm V (·, ·) and
a polynomial p such that x ∈ L if and only if there is a y, |y| ≤ p(|x|) such that V (x, y)
accepts.

We denote by NP the class of NP decision problems.
Equivalently, NP can be defined as the set of decision problems that are solvable in

polynomial time by a non-deterministic Turing machine. Suppose that L is solvable in
polynomial time by a non-deterministic Turing machine M : then we can define the relation
R such that (x, t) ∈ R if and only if t is a transcript of an accepting computation of M on
input x and it’s easy to prove that R is an NP relation and that L is in NP according to
our first definition. Suppose that L is in NP according to our first definition and that R is
the corresponding NP relation. Then, on input x, a non-deterministic Turing machine can
guess a string y of length less than p(|x|) and then accept if and only if (x, y) ∈ R. Such a
machine can be implemented to run in non-deterministic polynomial time and it decides L.

For a function t : N → N , we define by DTIME(t(n)) the set of decision problems
that are solvable by a deterministic Turing machine within time t(n) on inputs of length n,
and by NTIME(t(n)) the set of decision problems that are solvable by a non-deterministic
Turing machine within time t(n) on inputs of length n. Therefore, P =

⋃
kDTIME(O(nk))

and NP =
⋃
kDTIME(O(nk)).

1.3 NP-completeness

1.3.1 Reductions

Let A and B be two decision problems. We say that A reduces to B, denoted A ≤ B, if
there is a polynomial time computable function f such that x ∈ A if and only if f(x)inB.

Two immediate observations: if A ≤ B and B is in P, then also A ∈ P (conversely, if
A ≤ B, and A 6∈ P then also B 6∈ P); if A ≤ B and B ≤ C, then also A ≤ C.

1.3.2 NP-completeness

A decision problem A is NP-hard if for every problem L ∈ NP we have L ≤ A. A decision
problem A is NP-complete if it is NP-hard and it belongs to NP.

It is a simple observation that if A is NP-complete, then A is solvable in polynomial
time if and only if P = NP.

9

1.3.3 An NP-complete problem

Consider the following decision problem, that we call U : we are given in input (M,x, t, l)
where M is a Turing machine, x ∈ {0, 1}∗ is a possible input, and t and l are integers
encoded in unary2, and the problem is to determine whether there is a y ∈ {0, 1}∗, |y| ≤ l,
such that M(x, y) accepts in ≤ t steps.

It is immediate to see that U is in NP. One can define a procedure VU that on input
(M,x, t, l) and y accepts if and only if |y| ≤ l, and M(x, y) accepts in at most t steps.

Let L be an NP decision problem. Then there are algorithm VL, and polynomials TL
and pL, such that x ∈ L if and only if there is y, |y| ≤ pL(|x|) such that VL(x, y) accepts;
furthermore VL runs in time at most TL(|x| + |y|). We give a reduction from L to U .
The reduction maps x into the instance f(x) = (VL, x, TL(|x| + pL(|x|)), pL(|x|)). Just by
applying the definitions, we can see that x ∈ L if and only f(x) ∈ U .

1.3.4 The Problem SAT

In SAT (that stands for CNF-satisfiability) we are given Boolean variables x1, x2, . . . , xn and
a Boolean formula φ involving such variables; the formula is given in a particular format
called conjunctive normal form, that we will explain in a moment. The question is whether
there is a way to assign Boolean (True / False) values to the variables so that the formula
is satisfied.

To complete the description of the problem we need to explain what is a Boolean formula
in conjunctive normal form. First of all, Boolean formulas are constructed starting from
variables and applying the operators ∨ (that stands for OR), ∧ (that stands for AND) and
¬ (that stands for NOT).

The operators work in the way that one expects: ¬x is True if and only if x is False;
x ∧ y is True if and only if both x and y are True; x ∨ y is True if and only at least one
of x or y is True.

So, for example, the expression ¬x ∧ (x ∨ y) can be satisfied by setting x to False and
y to True, while the expression x ∧ (¬x ∨ y) ∧ ¬y is impossible to satisfy.

A literal is a variable or the negation of a variable, so for example ¬x7 is a literal and
so is x3. A clause is formed by taking one or more literals and connecting them with a OR,
so for example (x2 ∨ ¬x4 ∨ x5) is a clause, and so is (x3). A formula in conjunctive normal
form is the AND of clauses. For example

(x3 ∨ ¬x4) ∧ (x1) ∧ (¬x3 ∨ x2)

is a formula in conjunctive normal form (from now on, we will just say “CNF formula” or
“formula”). Note that the above formula is satisfiable, and, for example, it is satisfied by
setting all the variables to True (there are also other possible assignments of values to the
variables that would satisfy the formula).

On the other hand, the formula

x ∧ (¬x ∨ y) ∧ ¬y

is not satisfiable, as it has already been observed.
2The “unary” encoding of an integer n is a sequence of n ones.

10

Theorem 1 (Cook) SAT is NP-complete.

1.4 Diagonalization

Diagonalization is essentially the only way we know of proving separations between com-
plexity classes. The basic principle is the same as in Cantor’s proof that the set of real
numbers is not countable: suppose towards a contradiction that the set of real numbers in
the range [0, 1) where countable, and let r1, . . . , rn, . . . be an enumeration. Let ri[j] be the
j-th digit in the binary expansion of ri (that is, ri = sum∞j=12

−jri[j]). Then define the real

number r whose j-th digit is 1−rj [j], that is, r =
∑∞

j=1 2−j(1−rj [j]). This is a well-defined
real number but there can be no i such that r = ri, because r differs from i in the i-th digit.

Similarly, we can prove that the Halting problem is undecideble by considering the
following decision problem D: on input 〈M〉, the description of a Turing machine, answer
NO if M(〈M〉) halts and accepts and YES otherwise. The above problem is decidable if the
Halting problem is decidable. However, suppose D where decidable and let T be a Turing
machine that solves D, then T (〈T 〉) halts and accepts if and only if T (〈T 〉) does not halt
and accept, which is a contradiction.

It is easy to do something similar with time-bounded computations, given the following
result (that we will not prove).

Theorem 2 (Efficient Universal Turing Machine) On input the description 〈M〉 of a
Turing machine M , a string x and an integer t > n, the problem of deciding whether M
accepts x within t steps is solvable in O(t log t) time.

The O(t log t) simulation is possible if, say, both the universal machine and the simulated
machine are two-tapes Turing machines. A similar theorem holds for any reasonable model
of computation, with tO(1) in place of O(t log t).

Theorem 3 DTIME(n(log n)3) 6⊆ DTIME(O(n)).

Proof: Consider the following decision problem D: on input x = (〈M〉, z) answer NO if
M(x) rejects within |x| · log|x| steps, and YES otherwise.

The problem can be solved in O(n(log n)2) time, which is less than n(log n)3 for all but
finitely many inputs.

Suppose by contradiction that D is solvable in time ≤ an+ b on inputs of length n, for
constants a and b, by a machine T . Let z be sufficiently long so that |〈T 〉, z| log(|〈T 〉, z|) >
a|〈T 〉, z|+ b, then T (〈T 〉, z) accepts if and only if it rejects, which is a contradiction. 2

See the homeworks for generalizations of the above proof.
We would like to do the same for non-deterministic time, but we run into the problem

that we cannot ask a non-deterministic machine to reject if and only if a non-deterministic
machine of comparable running time accepts. If we could do so, then we would be able to
prove NP = coNP. A considerably subtler argument must be used instead, which uses the
following simple fact.

11

Theorem 4 On input the description 〈M〉 of a non-deterministic Turing machine M , a
string x and an integer t > n, the problem of deciding whether M accepts x within t steps
is solvable in deterministic 2O(t) time.

Finally, we can state and prove a special case of the non-deterministic hierarchy theorem.

Theorem 5 NTIME(n(log n)3) 6⊆ NTIME(O(n)).

Proof: Let f : N → N be defined inductively so that f(1) = 2 and f(k + 1) = 2kf(k).
Consider the following decision problem D: on input x = (〈M〉, 1t), where M is non-
deterministic Turing machine,

1. if t = f(k) then the answer is YES if and only if the simulation of M(〈M〉, 11+f(k−1))
as in Theorem 4 returns NO within t steps,

2. otherwise answer YES if and only if M(〈M〉, 1t+1) accepts within t log t steps.

We first observe that D is solvable by a non-deterministic Turing machine running in
O(n(logn)2) time, where n is the input length, which is less than n(logn)3 except for
finitely many values of n.

Suppose that D were decided by a non-deterministic Turing machine T running in
time bounded by an + b, and consider inputs of the form 〈T 〉, 1t (which are solved by T
in time a′t + b′). Pick a sufficiently large k, and consider the behaviour of T on inputs
(〈T 〉, 1t) for f(k − 1) < t < f(k); since all such inputs fall in case (2), we have that
T (〈T 〉, 1t) = T (〈T 〉, 1t+1) for all such t and, in particular,

T (〈T 〉, 11+f(k−1)) = T (〈T 〉, 1f(k)) (1.1)

On the other hand, the input (〈T 〉, 1f(k)) falls in case (2), and since T (〈T 〉, 11+f(k−1)) can
be simulated deterministically in time 2(k−1)f(k−1), if k is large enough, and so the correct
answer on input (〈T 〉, 1f(k)) is NO if and only if T (〈T 〉, 11+f(k−1)) accepts, which is in
contradiction to Equation 1.1. 2

1.5 References

The time hierarchy theorem is proved in [HS65], which is also the paper that introduced
the term “Computational Complexity.” The non-deterministic hierarchy theorem is due to
Cook [Coo73]. The notion of NP-completeness is due to Cook [Coo71] and Levin [Lev73],
and the recognition of its generality is due to Karp [Kar72].

12

Exercises

1. Show that if P = NP for decision problems, then every NP search problem can be
solved in polynomial time.

2. Generalize Theorem 3. Say that a monotone non-decreasing function t : N → N is
time-constructible if, given n, we can compute t(n) in O(t(n)) time. Show that if
t(n) and t′(n) are two time-constructible functions such that t′(n) > t(n) > n and

limn→∞
t(n) log t(n)

t′(n) = 0 then DTIME(t′(n)) 6⊆ DTIME(t(n)).

3. The proof of Theorem 3 shows that there is a problem D solvable in O(n(logn)2)
time such that every machine M running in time o(n logn) fails at solving D on a
constant fraction of all inputs of sufficiently large length. The constant, however, is
exponentially small in the representation of M .

Show that there is a problem D′ solvable in O(n(logn)2) time and such that for every
machine M running in time o(n logn) there is a constant nM such that, for every
n > nM , M fails at solving D′ on at least 1/3 of all inputs of length n.

[Note: this may be an open question. If you can find an oracle relative to which the
above statement is false, that would also be interesting, because it would show that
the question cannot be solved via a standard diagonalization.]

13

Lecture 2

Space-Bounded Complexity Classes

2.1 Space-Bounded Complexity Classes

A machine solves a problem using space s(·) if, for every input x, the machine outputs
the correct answer and uses only the first s(|x|) cells of the tape. For a standard Turing
machine, we can’t do better than linear space since x itself must be on the tape. So we
will often consider a machine with multiple tapes: a read-only “input” tape, a read/write
“work” or “memory” tape, and possibly a write-once “output” tape. Then we can say the
machine uses space s if for input x, it uses only the first s(|x|) cells of the work tape.

We denote by Ãl the set of decision problems solvable in O(logn) space. We denote by
PSPACE the set of decision problems solvable in polynomial space. A first observation is
that a space-efficient machine is, to a certain extent, also a time-efficient one. In general
we denote by SPACE(s(n)) the set of decision problems that can be solved using space at
most s(n) on inputs of length n.

Theorem 6 If a machine always halts, and uses s(·) space, with s(n) ≥ log n, then it runs
in time 2O(s(n)).

Proof: Call the “configuration” of a machine M on input x a description of the state
of M , the position of the input tape, and the contents of the work tape at a given time.
Write down c1, c2, . . . , ct where ci is the configuration at time i and t is the running time
of M(x). No two ci can be equal, or else the machine would be in a loop, since the ci
completely describes the present, and therefore the future, of the computation. Now, the
number of possible configurations is simply the product of the number of states, the number
of positions on the input tape, and the number of possible contents of the work tape (which
itself depends on the number of allowable positions on the input tape). This is

O(1) · n · |Σ|s(n) = 2O(s(n))+logn = 2O(s(n))

Since we cannot visit a configuration twice during the computation, the computation
must therefore finish in 2O(s(n)) steps. 2

NL is the set of decision problems solvable by a non-deterministic machine using
O(logn) space. NPSPACE is the set of decision problems solvable by a non-deterministic

14

machine using polynomial space. In general we denote by NSPACE(s(n)) the set of deci-
sion problems that can be solved by non-deterministic machines that use at most s(n) bits
of space on inputs of length n.

Analogously with time-bounded complexity classes, we could think that NL is exactly
the set of decision problems that have “solutions” that can verified in log-space. If so, NL
would be equal to NP, since there is a log-space algorithm V that verifies solutions to SAT.
However, this is unlikely to be true, because NL is contained in P. An intuitive reason
why not all problems with a log-space “verifier” can be simulated in NL is that an NL
machine does not have enough memory to keep track of all the non-deterministic choices
that it makes.

Theorem 7 NL ⊆ P.

Proof: Let L be a language in NL and let M be a non-deterministic log-space machine
for L. Consider a computation of M(x). As before, there are 2O(s(n)) = nO(1) possible
configurations. Consider a directed graph in which vertices are configurations and edges
indicate transitions from one state to another which the machine is allowed to make in
a single step (as determined by its δ). This graph has polynomially many vertices, so in
polynomial time we can do a depth-first search to see whether there is a path from the
initial configuration that eventually leads to acceptance. This describes a polynomial-time
algorithm for deciding L, so we’re done. 2

2.2 Reductions in NL

We would like to introduce a notion of completeness in NL analogous to the notion of
completeness that we know for the class NP. A first observation is that, in order to have
a meaningful notion of completeness in NL, we cannot use polynomial-time reductions,
otherwise any NL problem having at least a YES instance and at least a NO instance
would be trivially NL-complete. To get a more interesting notion of NL-completeness we
need to turn to weaker reductions. In particular, we define log space reductions as follows:

Definition 1 Let A and B be decision problems. We say A is log space reducible to B,
A ≤log B, if ∃ a function f computable in log space such that x ∈ A iff f(x) ∈ B, and
B ∈ L.

Theorem 8 If B ∈ L, and A ≤log B, then A ∈ L.

Proof: We consider the concatenation of two machines: Mf to compute f , and MB to
solve B. If our resource bound was polynomial time, then we would use Mf (x) to compute
f(x), and then run MB on f(x). The composition of the two procedures would given an
algorithm for A, and if both procedures run in polynomial time then their composition is
also polynomial time. To prove the theorem, however, we have to show that if Mf and MB

are log space machines, then their composition can also be computed in log space.
Recall the definition of a Turing machine M that has a log space complexity bound: M

has one read-only input tape, one write-only output tape, and uses a log space work tape.

15

A naive implementation of the composition of Mf and MB would be to compute f(x), and
then run MB on input f(x); however f(x) needs to be stored on the work tape, and this
implementation does not produce a log space machine. Instead we modify Mf so that on
input x and i it returns the i-th bit of f(x) (this computation can still be carried out in
logarithmic space). Then we run a simulation of the computation of MB(f(x)) by using
the modified Mf as an “oracle” to tell us the value of specified positions of f(x). In order
to simulate MB(f(x)) we only need to know the content of one position of f(x) at a time,
so the simulation can be carried with a total of O(log |x|) bits of work space. 2

Using the same proof technique, we can show the following:

Theorem 9 if A ≤log B,B ≤log C, then A ≤log C.

2.3 NL Completeness

Armed with a definition of log space reducibility, we can define NL-completeness.

Definition 2 A is NL-hard if ∀B ∈ NL, B ≤log A. A is NL-complete if A ∈ NL and A
is NL-hard.

We now introduce a problem STCONN (s,t-connectivity) that we will show isNL-complete.
In STCONN, given in input a directed graph G(V,E) and two vertices s, t ∈ V , we want to
determine if there is a directed path from s to t.

Theorem 10 STCONN is NL-complete.

Proof:

1. STCONN ∈ NL.

On input G(V,E), s,t, set p to s. For i = 1 to |V |, nondeterminsitically, choose a
neighboring vertex v of p. Set p = v. If p = t, accept and halt. Reject and halt if the
end of the for loop is reached. The algorithm only requires O(log n) space.

2. STCONN is NL-hard.

Let A ∈ NL, and let MA be a non-deterministic logarithmic space Turing Machine for
A. On input x, construct a directed graph G with one vertex for each configuration
of M(x), and an additional vertex t. Add edges (ci, cj) if M(x) can move in one step
from ci to cj . Add edges (c, t) from every configuration that is accepting, and let s
be the start configuration. M accepts x iff some path from s to t exists in G. The
above graph can be constructed from x in log space, because listing all nodes requires
O(log n) space, and testing valid edges is also easy.

2

16

2.4 Savitch’s Theorem

What kinds of tradeoffs are there between memory and time? STCONN can be solved
deterministically in linear time and linear space, using depth-first-search. Is there some
sense in which this is optimal? Nondeterministically, we can search using less than linear
space. Can searching be done deterministically in less than linear space?

We will use Savitch’s Theorem [Sav70] to show that STCONN can be solved deter-
ministically in O(log2 n), and that every NL problem can be solved deterministically in
O(log2 n) space. In general, if A is a problem that can be solved nondeterministically with
space s(n) ≥ logn, then it can be solved deterministically with O(s2(n))space.

Theorem 11 STCONN can be solved deterministically in O(log2 n) space.

Proof: Consider a graph G(V,E), and vertices s, t. We define a recursive function
REACH(u, v, k) that accepts and halts iff v can be reached from u in ≤ k steps. If
k = 1, then REACH accepts iff (u, v) is an edge. If k ≥ 2, ∀w ∈ V − {u, v}, compute
REACH(u,w, b k/2 c) and REACH(w, v, d k/2 e). If both accept and halt, accept. Else,
reject.

Let S(k) be the worst-case space use of REACH(·, ·, k). The space required for the
base case S(1) is a counter for tracking the edge, so S(1) = O(logn). In general, S(k) =
O(logn)+S(k/2) for calls to REACH and for tracking w. So, S(k) = O(log k∗ log n). Since
k ≤ n, the worst-case space use of REACH is O(log2 n). 2

Essentially the same proof applies to arbitrary non-deterministic space-bounded com-
putations.

Theorem 12 (Savitch’s Theorem) For every function s(n) computable in space O(s(n)),
NSPACE(s) = SPACE(O(s2))

Proof: We begin with a nondeterministic machine M , which on input x uses s(|x|) space.
We define REACH(ci, cj , k), as in the proof of Theorem 11, which accepts and halts iff
M(x) can go from ci to cj in ≤ k steps. We compute REACH(c0, cacc, 2

O(s|x|)) for all
accepting configurations cacc. If there is a call of REACH which accepts and halts, then
M accepts. Else, M rejects. If REACH accepts and halts, it will do so in ≤ 2O(|x|) steps.

Let SR(k) be the worst-case space used by REACH(·, ·, k): SR(1) = O(s(n)), SR(k) =
O(s(n)) + SR(k/2). This solves SR = s(n) ∗ log k, and, since k = 2O(s(n)), we have
SR = O(s2(n)). 2

Comparing Theorem 11 to depth-first-search, we find that we are exponentially better
in space requirements, but we are no longer polynomial in time.

Examining the time required, if we let t(k) be the worst-case time used by REACH(·, ·, k),
we see t(1) = O(n + m), and t(k) = n(2 ∗ T (k/2)), which solves to t(k) = nO(log k) =
O(nO(logn)), which is super-polynomial. Savitch’s algorithm is still the one with the best
known space bound. No known algorithm achieves polynomial log space and polynomial
time simultaneously, although such an algorithm is known for undirected connectivity.

17

2.5 Undirected Connectivity

In the undirected s − t connectivity problem (abbreviated ST-UCONN) we are given an
undirected graph G = (V,E) and two vertices s, t ∈ V , and the question is whether that is
a path between s and t in G.

While this problem is not known to be complete for NL, and it probably is not, ST-
UCONN is complete for the class SL of decision problems that are solvable by symmetric
non-deterministic machines that use O(logn) space. A non-deterministic machine is sym-
metric if whenever it can make a transition from a global state s to a global state s′ then the
transition from s′ to s is also possible. The proof of SL-completeness of ST-UCONN is iden-
tical to the proof of NL-completeness of ST-CONN except for the additional observation
that the transition graph of a symmetric machine is undirected.

For ST-UCONN there exists an algorithm running in polynomial time and O(log2 n)
space (but the polynomial has very high degree), due to Nisan [Nis94]. There is also an
algorithm that has O(log4/3 n) space complexity and superpolynomial time complexity, due
to Armoni, Ta-Shma, Nisan and Wigderson [ATSWZ97], improving on a previous algorithm
by Nisan, Szemeredy and Wigderson [NSW92].

2.6 Randomized Log-space

We now wish to introduce randomized space-bounded Turing machine. For simplicity, we
will only introduce randomized machines for solving decision problems. In addition to a
read-only input tape and a read/write work tape, such machines also have a read-only
random tape to which they have one-way access, meaning that the head on that tape can
only more, say, left-to-right. For every fixed input and fixed content of the random tape, the
machine is completely deterministic, and either accepts or rejects. For a Turing machine
M , an input x and a content r of the random tape, we denote by M(r, x) the outcome of
the computation.

We say that a decision problem L belongs to the class RL (for randomized log-space) if
there is a probabilistic Turing machine M that uses O(logn) space on inputs of length n
and such that

• For every x ∈ L, Prr[M(r, x) accepts] ≥ 1/2

• For every x 6∈ L, Prr[M(r, x) accepts] = 0.

It is easy to observe that any constant bigger than 0 and smaller than 1 could be
equivalently used instead of 1/2 in the definition above. It also follows from the definition
that L ⊆ RL ⊆ NL.

The following result shows that, indeed, L ⊆ SL ⊆ RL ⊆ NL.

Theorem 13 The problem ST-UCONN is in RL.

We will not give a proof of the above theorem, but just describe the algorithm. Given
an undirected graph G = (V,E) and two vertices s, t, the algorithm performs a random
walk of length 100 · n3 starting from s. If t is never reached, the algorithm rejects.

18

input: G = (V,E), s, t

v ← s
for i← 1 to 100 · n3

pick at random a neighbor w of v
if w = t then halt and accept
v ← w reject

The analysis of the algorithm is based on the fact that if we start a random walk from
a vertex s of an undirected vertex G, then all vertices in the connected component of s are
likely to be visited at least once after Θ(n3) steps.

The best known deterministic simulation of RL uses O((logn)3/2) space, and is due to
Saks and Zhou [SZ95].

19

2.7 NL = coNL

In order to prove that these two classes are the same, we will show that there is an NL
Turing machine which solves stconn. stconn is the problem of deciding, given a directed
graph G, together with special vertices s and t, whether t is not reachable from s. Note
that stconn is coNL-complete.

Once we have the machine, we know that coNL ⊆ NL, since any language A in coNL
can be reduced to stconn, and since stconn has been shown to be in NL (by the exis-
tence of our machine), so is A. Also, NL ⊆ coNL, since if stconn ∈ NL, by definition
stconn ∈ coNL, and since stconn is NL-complete, this means that any problem in NL
can be reduced to it and so is also in coNL. Hence NL = coNL. This result was proved
independently in [Imm88] and [Sze88].

2.7.1 A simpler problem first

Now all that remains to be shown is that this Turing machine exists. First we will solve
a simpler problem than stconn. We will assume that in addition to the usual inputs G,
s and t, we also have an input r, which we will assume is equal to the number of vertices
reachable from s in G, including s.

Given these inputs, we will construct a non-deterministic Turing machine which decides
whether t is reachable from s by looking at all subsets of r vertices in G, halting with yes if
it sees a subset of vertices which are all reachable from s but do not include t, and halting
with no otherwise. Here is the algorithm:

input: G = (V,E), s, t, r
output: yes if it discovers that t is not reachable from s, and no otherwise
assumption: there are exactly r distinct vertices reachable from s

c← 0
for all v ∈ (V − {t}) do

non-deterministically guess if v is reachable from s
if guess = YES then

non-deterministically guess the distance k from s to v
p← s
for i← 1 to k do

non-deterministically pick a neighbor q of p
p← q

if p 6= v, reject
c← c+ 1

if c = r then return yes, otherwise return no

It is easy to verify that this algorithm is indeed in NL. The algorithm only needs to
maintain the five variables c, k, p, q, v, and each of these variables can be represented with
log |V | bits.

20

Regarding correctness, notice that, in the algorithm, c can only be incremented for a
vertex v that is actually reachable from s. Since there are assumed to be exactly r such
vertices, c can be at most r at the end of the algorithm, and if it is exactly r, that means that
there are r vertices other than t which are reachable from s, meaning that t by assumption
cannot be reachable form s. Hence the algorithm accepts if and only if it discovers that t
is not reachable from s.

2.7.2 Finding r

Now we need to provide an NL-algorithm that finds r. Let’s first try this algorithm:

input: G = (V,E), s
output: the number of vertices reachable from s (including s in this count)

c← 0
for all v ∈ V do

non-deterministically guess if v is reachable from s in k steps
if guess = yes then
p← s
for i← 1 to k do

non-deterministically guess a neighbor q of p (possibly not moving at all)
p← q

if p 6= v reject
c← c+ 1

return c

This algorithm has a problem. It will only return a number c which is at most r,
but we need it to return exactly r. We need a way to force it to find all vertices which are
reachable from s. Towards this goal, let’s define rk to be the set of vertices reachable from
s in at most k steps. Then r = rn−1, where n is the number of vertices in G. The idea is
to try to compute rk from rk−1 and repeat the procedure n− 1 times, starting from r0 = 1.
Now here is another try at an algorithm:

input: G = (V,E), s, k, rk−1
output: the number of vertices reachable from s in at most k steps (including s in this count)
assumption: rk−1 is the exact number of vertices reachable from s in at most k − 1 steps

c← 0
for all v ∈ V do

d← 0
flag ← FALSE
for all w ∈ V do

p← s
for i← 1 to k − 1 do

non-deterministically pick a neighbor q of p (possibly not moving at all)
p← q

21

if p = w then
d← d+ 1
if v is a neighbor of w, or if v = w then
flag ← TRUE

if d < rk−1 reject
if flag then c← c+ 1

return c

Here is the idea behind the algorithm: for each vertex v, we need to determine if it is
reachable from s in at most k steps. To do this, we can loop over all vertices which are a
distance at most k− 1 from s, checking to see if v is either equal to one of these vertices or
is a neighbor of one of them (in which case it would be reachable in exactly k steps). The
algorithm is able to force all vertices of distance at most k − 1 to be considered because it
is given rk−1 as an input.

Now, putting this algorithm together with the first one listed above, we have shown that
stconn ∈ NL, implying that NL = coNL. In fact, the proof can be generalized to show
that if a decision problem A is solvable in non-deterministic space s(n) = Ω(log n), then A
is solvable in non-deterministic space O(s(n)).

Exercises

1. It is possible to prove that there is an algorithm that given a Turing machine M
(of the type with a read/only input tape and a work tape), an input x and a space
bound s, decides whether M(x) accepts and uses ≤ s bits of space; the algorithm uses
O(s) bits of space. Using the above result, argue that if s(n) > log n is a function
computable in O(s(n)) space, then SPACE(s(n) log n) 6⊆ SPACE(s(n)).

2. Prove that P 6= SPACE(O(n)).

[This is a “trick” question. It is not know how to prove P 6⊆ SPACE(O(n)) or how
to prove SPACE 6⊆ P, so the proof has to start by assuming the classes are equal
and then reach a contradiction, without explicitely showing a problem in one class
that cannot belong to the other. Hint: if A and B are decision problems, A ≤ B and
B ∈ P then A ∈ P; what would happen if the same were true for SPACE(O(n))?]

3. Define the class BPL (for bounded-error probabilistic log-space) as follows. A decision
problem L is in BPL if there is a log-space probabilistic Turing machine M such that

• If x ∈ L then Prr[M(r, x) accepts] ≥ 2/3;

• If x 6∈ L then Prr[M(r, x) accepts] ≤ 1/3.

Then

(a) Prove that RL ⊆ BPL.

(b) Prove that BPL ⊆ SPACE(O((log n)2).

(c) This might be somewhat harder: prove that BPL ⊆ P.

22

Lecture 3

The Polynomial Hierarchy

One way to look at the difference between NP and coNP is that a decision problem in
NP is asking a sort of “does there exist” question, where the existence of the answer can
by definition be efficiently represented. On the other hand, coNP asks “is it true for all”
questions, which do not seem to have simple, efficient proofs.

Formally, a decision problem A is in NP if and only if there is a polynomial time
procedure V (·, ·) and a polynomial time bound p() such that

x ∈ A if and only if ∃y.|y| ≤ p(|x|) ∧ V (x, y) = 1

and a problem A is in coNP if and only if there is a polynomial time procedure V (·, ·)
and a polynomial bound p() such that

x ∈ A if and only if ∀y : |y| ≤ p(|x|), V (x, y) = 1

3.1 Stacks of quantifiers

Now suppose you had a decision problem A which asked something of the following form:

x ∈ A⇔ ∃ y1 s.t. |y1| ≤ p(|x|) ∀ y2 s.t. |y2| ≤ p(|x|) V (x, y1, y2)

(where p() is a polynomial time bound and V (·, ·, ·) is a polynomial time procedure.)
In other words, an algorithm solving problem A should return yes on an input x if an

only if there exists some string y1 such that for all strings y2 (both of polynomial length),
the predicate V (x, y1, y2) holds. An example of such a problem is this: given a Boolean
formula φ over variables x1, . . . , xn, is there a formula φ′ which is equivalent to φ and is
of size at most k? In this case, y1 is the formula φ′, y2 is an arbitrary assignment to the
variables x1, . . . , xn, and V (x, y1, y2) is the predicate which is true if and only if x[y2] and
y1[y2] are both true or both false, meaning that under the variable assignment y2, φ and φ′

agree. Notice that φ′ is equivalent to φ if and only if it agrees with φ under all assignments
of Boolean values to the variables.

As we will see, the problem A is a member of the class Σ2 in the second level of the
polynomial hierarchy.

23

3.2 The hierarchy

The polynomial hierarchy starts with familiar classes on level one: Σ1 = NP and Π1 =
coNP. For all i ≥ 1, it includes two classes, Σi and Πi, which are defined as follows:

A ∈ Σi ⇔ ∃y1. ∀y2.Qyi. VA(x, y1, . . . , yi)

and
B ∈ Πi ⇔ ∀y1. ∃y2.Q′yi. VB(x, y1, . . . , yi)

where the predicates VA and VB depend on the problems A and B, and Q and Q′ represent
the appropriate quantifiers, which depend on whether i is even or odd (for example, if i = 10
then the quantifier Q for Σ10 is ∀, and the quantifier Q′ for Π10 is ∃). For clarity, we have
also omitted the p(·) side conditions, but they are still there.

One thing that is easy to see is that Πk = coΣk. Also, note that, for all i ≤ k − 1,
Πi ⊆ Σk and Σi ⊆ Σk. These subset relations hold for Πk as well. This can be seen by
noticing that the predicates V do not need to “pay attention to” all of their arguments,
and so can represent classes lower on the hierarchy which have a smaller number of them.

3.3 An alternate characterization

The polynomial hierarchy can also be characterized in terms of “oracle machines.” The idea
here is that, instead of a standard Turing machine, we consider one which is augmented
with an oracle of a certain power which can be consulted as many times as desired, and
using only one computational step each time. Syntactically, this can be written as follows.

Let A be some decision problem and M be a class of Turing machines. Then MA is
defined to be the class of machines obtained fromM by allowing instances of A to be solved
in one step. Similarly, if M is a class of Turing machines and C is a complexity class, then
MC =

⋃

A∈CMA. If L is a complete problem for C, and the machines in M are powerful
enough to compute polynomial-time computations, then MC =ML.

Theorem 14 Σ2 = NP3SAT .

Proof: Let A ∈ Σ2, then for some polynomial p() and polynomial-time computable V ()
we have

x ∈ A if and only if ∃y1 s.t. |y1| ≤ p(|x|).∀y2 s.t. |y2| ≤ p(|x|).V (x, y1, y2) = 1

Then we define a non-deterministic machine with an NP-oracle as follows: on input x,
the machine guesses a string y1 of length at most p(|x|), and then asks the oracle whether
∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 0. The above question is an existential question about a
polynomial-time computation, so, by Cook’s theorem, it is possible to construct in polyno-
mial time a 3SAT instance that is satisfiable if and only if the answer to the above question
is YES. The machine accepts if and only if the answer from the oracle is NO. It is immediate
that the machine has an accepting computation if and only if

∃y1.|y1| ≤ p(|x|).(¬∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 0)

24

that is, the machine accepts if and only if x ∈ A.
Notice that, in the above computation, only one oracle query is made, even though the

definition of NP3SAT allows us to make an arbitrary number of oracle queries.
Let now A ∈ NP3SAT , and let M be the oracle machine that solves A. We first show

that there is a machine M ′ that also solves A, only makes one oracle query, and accepts
if and only if the answer to the oracle query is NO. On input x, M ′ guesses an accepting
computation of M(x), that is, M ′ guesses all the non-deterministic choices of M(x), all the
oracle questions, and all the answers. Then, for each question that was answered with a
YES, M ′ guesses a satisfying assignment to verify that the guess was correct. Finally, M ′

is left with a certain set of oracle questions, say, the formulae φ1, . . . , φk, for which it has
guessed that the correct oracle answer is NO. Then M ′ asks its oracle whether (a formula
equivalent to) φ1 ∨ · · · ∨ φk is satisfiable, and it accepts if and only if the answer is NO.

Consider the computation of M ′(x) when x ∈ A: there is a valid accepting computation
of M(x), and M ′(x) can guess that computation along with the valid oracle answers; it can
also guess valid assignments for all the queries for which the answer is YES; finally, it is left
with unsatisfiable formulae φ1, . . . , φk, the answer to the single oracle query of M ′ is NO,
and M ′ accepts.

Conversely, if M ′(x) has an accepting computation, then there must be a valid accepting
computation of M(x), and so x ∈ A. 2

In fact, a more general result is known, whose proof works along similar lines.

Theorem 15 For every i ≥ 2, Σi = NPΣi−1 .

3.4 Additional Properties

Here are some more facts about the polynomial hierarchy, which we will not prove:

1. Πi and Σi have complete problems for all i.

2. A Σi-complete problem is not in Πj , j ≤ i − 1, unless Πj = Σi, and it is not in Σj

unless Σj = Σi.

3. Suppose that Σi = Πi for some i. Then Σj = Πj = Σi = Πi for all j ≥ i.

4. Suppose that Σi = Σi+1 for some i. Then Σj = Πj = Σi for all j ≥ i.

5. Suppose that Πi = Πi+1 for some i. then Σj = Πj = Πi for all j ≥ i.

We will just prove the following special case of part (3).

Theorem 16 Suppose NP = coNP. Then, for every i ≥ 2, Σi = NP.

Proof: Let us first prove that, under the assumption of the theorem, Σ2 = NP. Let A ∈ Σ2

and let M be the non-deterministic oracle machine that decides A using oracle access to
3SAT. Let also M ′ be the non-deterministic polynomial time Turing machine that decides
the complement of the 3SAT problem. We now describe a non-deterministic polynomial
time Turing machine M ′′ to decide A: on input x, M ′′ guesses an accepting computation

25

of M(x), along with oracle queries and answers; for each oracle question φ for which a YES
answer has been guessed, M ′′ guesses a satisfying assignment; for each oracle question ψ
for which a NO answer has been guessed, M ′′ guesses an accepting computation of M ′(ψ).
It is easy to verify that M ′′(x) has an accepting computation if and only if M 3SAT (x) has
an accepting computation.

We can prove by induction on i that Σi = NP. We have covered the base case. Let us

now suppose that Σi−1 = NP; then Σi = NPΣi−1 = NPNP = Σ2 = NP. 2

While it seems like an artificial construction right now, in future lectures we will see
that the polynomial hierarchy helps us to understand other complexity classes.

3.5 References

The polynomial time hierarchy was defined by Stockmeyer [Sto76]. Wrathall [Wra76] shows
that every class in the polynomial hierarchy has complete problems.

26

Exercises

1. Consider the following decision problem: given a directed graph G = (V,E), two
vertices s, t ∈ V , and an integer k, determine whether the shortest path from s to t is
of length k. Is this problem in NL?

2. In the MAX SAT problem we are given a formula φ in conjunctive normal form and
we want to find the assignment of values to the variables that maximizes the number
of satisfied clauses. (For example, if φ is satisfiable, the optimal solution satisfies all
the clauses and the MAX SAT problem reduces to finding a satisfying assignment.)
Consider the following decision problem: given a formula φ in conjunctive normal
form and an integer k, determine if k is the number of clauses of φ satisfied by an
optimal assignment.

• Prove that this problem is in NP if and only if NP = coNP.
[Hint: prove that it is both NP-hard and coNP-hard.]

• Prove that this problem is in Σ2.

27

Lecture 4

Circuits

This lecture is on boolean circuit complexity. We first define circuits and the function they
compute. Then we consider families of circuits and the language they define. In Section 4.2,
we see how circuits relate to other complexity classes by a series of results, culminating with
the Karp-Lipton theorem which states that ifNP problems can be decided with polynomial-
size circuits, then PH = Σ2.

4.1 Circuits

A circuit C has n inputs, m outputs, and is constructed with and gates, or gates and not

gates. Each gate has in-degree 2 except the not gate which has in-degree 1. The out-degree
can be any number. A circuit must have no cycle. See Figure 4.1.

AND

AND

 OR

x
1

x
2

x
3

x
4 n

x

1
z

2
z z

m

NOT

. . .

. . .

Figure 4.1: A Boolean circuit.

A circuit C with n inputs and m outputs computes a function fC : {0, 1}n → {0, 1}m.

28

NOT

AND

 OR

AND

NOT

x
1

x
2

circuits
XOR

x
3

x
4

Figure 4.2: A circuit computing the boolean function fC(x1x2x3x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

See Figure 4.2 for an example.
Define SIZE(C) = # of and and or gates of C. By convention, we do not count the

not gates.
To be compatible with other complexity classes, we need to extend the model to arbitrary

input sizes:

Definition 3 A language L is solved by a family of circuits {C1, C2, . . . , Cn, . . .} if for every
n ≥ 1 and for every x s.t. |x| = n,

x ∈ L ⇔ fCn(x) = 1.

Definition 4 Say L ∈ SIZE(s(n)) if L is solved by a family {C1, C2, . . . , Cn, . . .} of cir-
cuits, where Ci has at most s(i) gates.

4.2 Relation to other complexity classes

Proposition 17 For every language L, L ∈ SIZE(O(2n)). In other words, exponential
size circuits contain all languages.

Proof: We need to show that for every 1-output function f : {0, 1}n → {0, 1}, f has
circuit size O(2n).

Use the identity f(x1x2 . . . xn) = (x1∧ f(1x2 . . . xn))∨ (x1∧ f(0x2 . . . xn)) to recursively
construct a circuit for f , as shown in Figure 4.3.

The recurrence relation for the size of the circuit is: s(n) = 3 + 2s(n− 1) with base case
s(1) = 1, which solves to s(n) = 2 · 2n − 3 = O(2n). 2

29

x
1

x
2 n

x

NOT

ANDAND

 OR

...

x
2
... x

n
)f(1 x

2
... x

n
)f(0

...

...

...

Figure 4.3: A circuit computing any function f(x1x2 . . . xn) of n variables assuming circuits
for two functions of n− 1 variables.

Proposition 18 If L ∈ DTIME(t(n)), then L ∈ SIZE(O(t2(n))).

Proof: Let L be a decision problem solved by a machine M in time t(n). Fix n and x s.t.
|x| = n, and consider the t(n)× t(n) tableau of the computation of M(x). See Figure 4.4.

Assume that each entry (a, q) of the tableau is encoded using k bits. By Proposition
17, the transition function {0, 1}3k → {0, 1}k used by the machine can be implemented by
a “next state circuit” of size k · O(23k), which is exponential in k but constant in n. This
building block can be used to create a circuit of size O(t2(n)) that computes the complete
tableau, thus also computes the answer to the decision problem. This is shown in Figure 4.5.
2

Corollary 19 P ⊆ SIZE(nO(1)).

On the other hand, it’s easy to show that P 6= SIZE(nO(1)).

Proposition 20 There are languages L such that L 6∈ SIZE(2o(n)). In other words, for
every n, there exists f : {0, 1}n → {0, 1} that cannot be computed by a circuit of size 2o(n).

Proof: This is a counting argument. There are 22
n

functions f : {0, 1}n → {0, 1}, and we
claim that the number of circuits of size s is at most 2O(s log s), assuming s ≥ n. To bound the
number of circuits of size s we create a compact binary encoding of such circuits. Identify
gates with numbers 1, . . . , s. For each gate, specify where the two inputs are coming from,
whether they are complemented, and the type of gate. The total number of bits required
to represent the circuit is

s(2 log(n+ s) + 3) ≤ s(2 log 2s+ 3) = s(2 log 2s+ 5).

30

x1q0 x2 xn

.

.

.
.
.
.

q

xx3 4

. . .

a b c d etime

tape position

Figure 4.4: t(n) × t(n) tableau of computation. The left entry of each cell is the tape
symbol at that position and time. The right entry is the machine state or a blank symbol,
depending on the position of the machine head.

q0

x1 x2 3x

next
state

next
state

next
state

next
state

next
state

next
state

.

.

.
.
.
.

.

.

.

next
state

next
state

next
statek bits

k bits k bits k bits

. . .

next state
circuit

xn. . .

. . .

check for accepting state

.

Figure 4.5: Circuit to simulate a Turing machine computation by constructing the tableau.

31

So the number of circuits of size s is at most 22s log s+5s, and this is not sufficient to
compute all possible functions if

22s log s+5s < 22
n
.

This is satisfied if s = 2o(n). 2

Theorem 21 (Karp-Lipton-Sipser) If NP ⊆ SIZE(nO(1)) then PH = Σ2. In other
words, the polynomial hierarchy would collapse to its second level.

Before proving the above theorem, we first show a result that contains some of the ideas
in the proof of the Karp-Lipton-Sipser theorem.

Lemma 22 If NP ⊆ SIZE(nO(1)) then there is a family of polynomial-size circuits that
on input a 3CNF formula φ outputs a satisfying assignment for φ if one such assignment
exists and a sequence of zeroes otherwise.

Proof: We define the circuits C1
n, . . . , C

n
n as follows:

• C1
n, on input a formula φ over n variables outputs 1 if and only if there is a satisfying

assignment for φ where x1 = 1,

• · · ·

• Ci
n, on input a formula φ over n variables and bits b1, . . . , bi−1, outputs 1 if and only

if there is a satisfying assignment for φ where x1 = b1, . . . , xi−1 = bi−1, xi = 1

• · · ·

• Cn
n , on input a formula φ over n variables and bits b1, . . . , bn−1, outputs 1 if and only

if φ is satisfied by the assignment x1 = b1, . . . , xn−1 = bn−1, xn = 1.

Also, each circuit realizes an NP computation, and so it can be built of polynomial size.
Consider now the sequence b1 = C1

n(φ), b2 = C2
n(b1, φ), . . . , bnC

n
n (b1, . . . , bn−1, φ). The

reader should be able to convince himself that this is a satisfying assignment for φ if φ is
satisfiable, and a sequence of zeroes otherwise. 2

We now prove the Karp-Lipton-Sipser theorem.

Proof: [Of Theorem 21] We will show that if NP ⊆ SIZE(nO(1)) then Π2 ⊆ Σ2. By a
result in a previous lecture, this implies that PH = Σ2.

Let L ∈ Π2, then there is a polynomial p() and a polynomial-time computable V () such
that

x ∈ L iff ∀y1.|y1| ≤ p(|x|)∃y2.|y2| ≤ p(|x|).V (x, y1, y2) = 1

By adapting the proof of Lemma 22 (see Figure 4.6), or by using the statement of the
Lemma and Cook’s theorem, we can show that, for every n, there is a circuit Cn of size
polynomial in n such that for every x and every y1, |y1| ≤ p(|x|),

32

x1 1y
there is y
starting with
1

2

x1 1y
there is y2

y
2

x1 1y 1b x1 1y 2b1b

1b 2b

. . .

. . .

there is y
starting with

2

b 1

there is y
starting with
b b 1

2

1 1 2

3b

0 or 1

Figure 4.6: How to use decision problem solvers to find a witness to a search problem.

∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 1 iff V (x, y1, Cn(x, y1)) = 1

Let q(n) be a polynomial upper bound to the size of Cn.
So now we have that for inputs x of length n,

x ∈ L iff ∃Cn.|Cn| ≤ q(n).∀y1.|y1| ≤ p(n).V (x, y1, Cn(x, y1)) = 1

which shows that L is in Σ2. 2

4.3 References

The Karp-Lipton-Sipser theorem appears in [KL80].

33

Exercises

1. Show that SIZE(nO(1)) 6⊆ P.

2. Show that there is a language in SPACE(2n
O(1)

) that does not belong to SIZE(2o(n)).

3. Define EXP = DTIME(2n
O(1)

). Prove that if EXP ⊆ SIZE(nO(1)) then EXP = Σ2.

34

Lecture 5

Probabilistic Complexity Classes

In this lecture we will define the probabilistic complexity classes BPP, RP, ZPP and
we will see how they are related to each other, as well as to other deterministic or circuit
complexity classes.

5.1 Probabilistic complexity classes

First we are going to describe the probabilistic model of computation. In this model an
algorithm A gets as input a sequence of random bits r and the ”real” input x of the problem.
The output of the algorithm is the correct answer for the input x with some probability.

Definition 5 An algorithm A is called a polynomial time probabilistic algorithm if the size
of the random sequence |r| is polynomial in the input |x| and A() runs in time polynomial
in |x|.
If we want to talk about the correctness of the algorithm, then informally we could say that
for every input x we need Pr[A(x, r) = correct answer forx] ≥ 2

3 . That is, for every input
the probability distribution over all the random sequences must be some constant bounded
away from 1

2 . Let us now define the class BPP.

Definition 6 A decision problem L is in BPPif there is a polynomial time algorithm A
and a polynomial p() such that :

∀x ∈ L Prr∈{0,1}p(|x|) [A(x, r) = 1] ≥ 2/3

∀x 6∈ L Prr∈{0,1}p(|x|) [A(x, r) = 1] ≤ 1/3

We can see that in this setting we have an algorithm with two inputs and some con-
straints on the probabilities of the outcome. In the same way we can also define the class
P as:

Definition 7 A decision problem L is in Pif there is a polynomial time algorithm A and
a polynomial p() such that :

∀x ∈ L : Prr∈{0,1}p(|x|) [A(x, r) = 1] = 1

∀x 6∈ L : Prr∈{0,1}p(|x|) [A(x, r) = 1] = 0

35

Similarly, we define the classes RPand ZPP.

Definition 8 A decision problem L is in RPif there is a polynomial time algorithm A and
a polynomial p() such that :

∀x ∈ L Prr∈{0,1}p(|x|) [A(x, r) = 1] ≥ 1/2

∀x 6∈ L Prr∈{0,1}p(|x|) [A(x, r) = 1] ≤ 0

Definition 9 A decision problem L is in ZPPif there is a polynomial time algorithm A
whose output can be 0, 1, ? and a polynomial p() such that :

∀x Prr∈{0,1}p(|x|) [A(x, r) =?] ≤ 1/2

∀x, ∀r such that A(x, r) 6=? then A(x, r) = 1 if and only if x ∈ L

5.2 Relations between complexity classes

After defining these probabilistic complexity classes, let’s see how they are related to other
complexity classes and with each other.

Theorem 23 RP⊆NP.

Proof: Suppose we have an algorithm for RP. Then this algorithm is also in NP. If
x ∈ L then there is a random sequence r, for which the algorithm answers yes. On the
other hand, if x 6∈ L then there is no witness. 2

Most natural probabilistic algorithms belong to the class RP. We can also show that
the class ZPP is no larger than RP.

Theorem 24 ZPP⊆RP.

Proof: We are going to convert a ZPP algorithm into an RP algorithm. The construction
consists of running the ZPP algorithm and anytime it outputs ?, the new algorithm will
answer 0. In this way, if the right answer is 0, then the algorithm will answer 0 with
probability 1. On the other hand, when the right answer is 1, then the algorithm will give
the wrong answer with probability less than 1/2, since the probability of the ZPP algorithm
giving the output ? is less than 1/2. 2

Another interesting property of the class ZPP is that it’s equivalent to the class of
languages for which there is an average polynomial time algorithm that always gives the
right answer. More formally,

Theorem 25 A language L is in the class ZPPif and only if L has an average polynomial
time algorithm that always gives the right answer.

Proof: First let us clarify what we mean by average time. For each input x we take the
average time of A(x, r) over all random sequences r. Then for size n we take the worst time
over all possible inputs x of size |x| = n. In order to construct an algorithm that always
gives the right answer we run the ZPPalgorithm and if it outputs a ?, then we run it again.

36

Suppose that the running time of the ZPPalgorithm is T , then the average running time
of the new algorithm is:

Tavg =
1

2
· T +

1

4
· 2T + . . .+

1

2k
· kT ≈ O(T)

Now, we want to prove that if the language L has an algorithm that runs in polynomial
average time t(|x|), then this is in ZPP. What we do is run the algorithm for time 2t(|x|)
and output a ? if the algorithm has not yet stopped. It is straightforward to see that
this belongs to ZPP. First of all, the worst running time is polynomial, actually 2t(|x|).
Moreover, the probability that our algorithm outputs a ? is less than 1/2, since the original
algorithm has an average running time t(|x|) and so it must stop before time 2t(|x|) at least
half of the times. 2

Let us now prove the fact that RPis contained in BPP.

Theorem 26 RP⊆BPP
Proof: We will convert an RPalgorithm into a BPPalgorithm. In the case that the input
x does not belong to the language then the RPalgorithm always gives the right answer, so
this is definitely in BPPas well. In the case that the input x does belong to the language
then we need to boost the probability of a correct answer from at least 1/2 to at least 2/3.

More formally, let A be an RPalgorithm for a decision problem L. We fix some number
k and define the following algorithm:

A(k)

input: x,
pick r1, r2, . . . , rk
if A(x, r1) = A(x, r2) = . . . = A(x, rk) = 0 then return 0
else return 1

Let us now consider the correctness of the algorithm.In case the correct answer is 0 the
output is always right, though in the case where the right answer is 1 the output is right
except when all A(x, ri) = 0.

if x 6∈ L Prr1,...,rk [Ak(x, r1, . . . , rk) = 1] = 0

if x ∈ L Prr1,...,rk [Ak(x, r1, . . . , rk) = 1] ≥ 1−
(

1

2

)k

It is easy to see that by choosing an appropriate k the second probability can go arbitrarily
close to 1 and therefore become larger than 2/3, which is what is required by the definition
of BPP. In fact, by choosing k to be a polynomial in |x|, we can make the probability
exponentially close to 1. This enables us to change the definition of RPand instead of the
bound of 1/2 for the probability of a correct answer when the input is in the language L,

we can have a bound of 1−
(
1
2

)q(|x|)
, for a fixed polynomial q. 2

Let, now, A be a BPP algorithm for a decision problem L. Then, we fix k and define
the following algorithm:

37

A(k)

input: x,
pick r1, r2, . . . , rk
c =

∑k
i=1A(x, ri)

if c ≥ k
2 then return 1

else return 0

In a BPP algorithm we expect the right answer to come up with probability more than 1/2.
So, by running the algorithm many times we make sure that this slightly bigger than 1/2
probability will actually show up in the results. More formally let us define the Chernoff
bounds.

Theorem 27 (Chernoff Bound)
Suppose X1, . . . , Xk are independent random variables with values in {0, 1} and for every i,
Pr[Xi = 1] = p. Then:

Pr[1k

k∑

i=1

Xi − p > ε] < e
−ε2 k

2p(1−p)

Pr[1k

k∑

i=1

Xi − p < −ε] < e
−ε2 k

2p(1−p)

The Chernoff bounds will enable us to bound the probability that our result is far from the
expected. Indeed, these bounds say that this probability is exponentially small in respect
to k.

Let us now consider how the Chernoff bounds apply to the algorithm we described
previously. We fix the input x and call p = Prr[A(x, r) = 1] over all possible random
sequences. We also define the independent random variables X1, . . . , Xk such that Xi =
A(x, ri).

First, suppose x ∈ L. Then the algorithm A(k)(x, r1, . . . , rk) outputs the right answer
1, when 1

k

∑

iXi ≥ 1
2 . So, the algorithm makes a mistake when 1

k

∑

iXi <
1
2 .

We now apply the Chernoff bounds to bound this probability.

Pr[A(k)outputs the wrong answer on x] = Pr[1k

∑

i

Xi <
1
2]

≤ Pr[1k
∑

i

Xi − p ≤ −1
6]

since p ≥ 2
3 .

≤ e−
k

72p(1−p) = 2−Ω(k)

38

The probability is exponentially small in k. The same reasoning applies also for the case
where x 6∈ L. Further, it is easy to see that by choosing k to be a polynomial in |x| instead
of a constant, we can change the definition of a BPPalgorithm and instead of the bound
of 1

3 for the probability of a wrong answer, we can have a bound of 2−q(|x|), for a fixed
polynomial q.

Next, we are going to see how the probabilistic complexity classes relate to circuit
complexity classes and specifically prove that the class BPPhas polynomial size circuits.

Theorem 28 (Adleman) BPP⊆SIZE(nO(1))

Proof: Let L be in the class BPP. Then by definition, there is a polynomial time
algorithm A and a polynomial p, such that for every input x

Prr∈{0,1}p(|x|) [A(x, r) = wrong answer for x] ≤ 2−(n+1)

This follows from our previous conclusion that we can replace 1
3 with 2−q(|x|). We now fix

n and try to construct a family of circuits Cn, that solves L on inputs of length n.

Claim 29 There is a random sequence r ∈ {0, 1}p(n) such that for every x ∈ {0, 1}n A(x, r)
is correct.

Proof: Informally, we can see that for each input x the number of random sequences
r that give the wrong answer is exponentially small. Therefore, even if we assume that
these sequences are different for every input x, their sum is still less than the total number
of random sequences. Formally, let’s consider the probability over all sequences that the
algorithm gives the right answer for all input. If this probability is greater than 0, then the
claim is proved.

Prr[for every x,A(x, r) is correct] = 1−Prr[∃x,A(x, r) is wrong]

the second probability is the union of 2n possible events for each x. This is bounded by the
sum of the probabilities.

≥ 1−
∑

x∈{0,1}n
Prr[A(x, r)is wrong]

≥ 1− 2n · 2−(n+1)

≥ 1

2

2

So, we proved that at least half of the random sequences are correct for all possible
input x. Therefore, it is straightforward to see that we can simulate the algorithm A(·, ·),
where the first input has length n and the second p(n), by a circuit of size polynomial in n.

All we have to do is find a random sequence which is always correct and build it inside
the circuit. Hence, our circuit will take as input only the input x and simulate A with input

39

x and r for this fixed r. Of course, this is only an existential proof, since we don’t know
how to find this sequence efficiently. 2

In conclusion, let us briefly describe some other relations between complexity classes.
Whether BPP ⊆ NP or not is still an open question. What we know is that it’s unlikely
that NPis contained in BPP, since then by the previous result NP would have polynomial
size circuits and hence by the result of Karp and Lipton the polynomial hierarchy would
collapse.

5.3 BPP⊆ Σ2

This result was first shown by Sipser and Gacs. Lautemann gave a much simpler proof
which we give below.

Lemma 30 If L is in BPP then there is an algorithm A such that for every x,

Prr(A(x, r) = right answer) ≥ 1− 1
3m ,

where the number of random bits |r| = m = |x|O(1) and A runs in time |x|O(1).

Proof: Let Â be aBPP algorithm for L. Then for every x, Prr(Â(x, r) = wrong answer) ≤
1
3 . and Â uses m̂(n) random bits where n = |x|.

Do k(n) repetitions of Â and accept if and only if at least
k(n)

2
executions of Â ac-

cept. Call the new algorithm A. Then A uses k(n)m̂(n) random bits and Prr(A(x, r) =
wrong answer) ≤ 2−ck(n). We can then find k(n) with k(n) = Θ(log m̂(n)) such that

1
2ck(n) ≤ 1

3k(n) ˆm(n)
. 2

Theorem 31 BPP⊆ Σ2.

Proof: Let L be in BPP and A as in the claim. Then we want to show that

x ∈ L⇔ ∃y1, . . . , ym ∈ {0, 1}m∀z ∈ {0, 1}m
m∨

i=1

A(x, yi ⊕ z) = 1

where m is the number of random bits used by A on input x.
Suppose x ∈ L. Then

Pry1,...,ym(∃zA(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

≤
∑

z∈{0,1}m
Pry1,...,ym(A(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

≤ 2m
1

(3m)m

< 1.

40

So

Pry1,...,ym(∀z
∨

i

A(x, yi ⊕ z)) = 1−Pry1,...,ym(∃zA(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

> 0.

So (y1, . . . , ym) exists.
Conversely suppose x /∈ L. Then

Prz

(
∨

i

A(x, yi ⊕ z)
)

≤
∑

i

Prz (A(x, yi ⊕ z) = 1)

≤ m · 1

3m

=
1

3
.

So

Prz(A(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0) = Prz

(
∨

i

A(x, yi ⊕ z)
)

≥ 2

3
> 0.

So there is a z such that
∨

iA(x, yi ⊕ z) = 0 for all y1, . . . , ym ∈ {0, 1}m. 2

5.4 References

Probabilistic complexity classes were defined in [Gil77]. Adleman’s proof that BPP ⊆
SIZE(nO(1)) appears in [Adl78]. Sipser’s proof that BPP ⊆ Σ2 appears in [Sip83], and
Lautemann’s proof is in [Lau83].

41

Exercises

1. Prove that ZPP=RP∩coRP

2. Show that if NP ⊆ BPP then NP = RP.

3. Argue that SPACE(O(nlogn)) 6⊆ BPP.

42

Lecture 6

A Probabilistic Algorithm

6.1 Branching Programs

We begin by introducing another model of computation, that of branching programs. A
branching program accepts or rejects input strings x1, . . . , xn and can be described as a
directed acyclic graph with a single root and two final states, 0 and 1. The computational
path begins at the root. Each non-final vertex is labeled with some single variable xi and
has two outgoing edges, one labeled 0 and the other 1. The path follows edge b such that
xi = b, and the program accepts the input if and only if the path ends at the final state 1.

An illustrative example is the branching program that considers input string x1x2x3 and
outputs 1 if x1 ⊕ x2 ⊕ x3 = 1. This is shown in figure 6.1.

Branching programs are a reasonably powerful model of computation; for example we
can show that L can be computed by branching programs of polynomial size.

.

.

.

.

.

.

.

.

.

.

.

.

AND

OR

. . .}k

Figure 6.1: A branching program.

43

6.2 Testing Equivalence

We would like to be able to consider two branching programs and determine if they compute
the same function. In general, testing equivalence for any model of computation is difficult:
for Turing machines, the problem is undecidable, and for circuits, the problem is coNP-
complete. A similar result is true for branching programs– here, testing equivalence is also
coNP-complete, through a reduction from co-3SAT.

Happily, the problem becomes easier once we restrict it to read-once branching programs,
in which every path from the root to a final state tests each variable at most once. We will
show that in this case testing equivalence is in coRP. Our strategy will be as follows: Given
two read-once branching programs B1 and B2, we will define two polynomials p1 and p2 of
degree n over x1, . . . , xn that are equivalent if and only if B1 and B2 are also equivalent.
We will then use a coRPalgorithm to test the equivalence of the two polynomials. The
polynomials will be represented in compact form, but will have an exponential number of
monomials and thus we cannot simply directly compare their coefficients.

Our polynomials will be determined as follows:

• We assign each vertex vi in the branching program from the root to the final states
a polynomial pi(x1, . . . , xn), beginning with the root vertex which gets the constant
polynomial 1.

• Once a vertex has been assigned a polynomial p(x1, . . . , xn), its outgoing edges are
then given polynomials in the following manner: If the vertex performed a test on xj ,
the outgoing 0 edge receives the polynomial (1− xj)p(x1, . . . , xn) and the outgoing 1
edge receives (xj)p(x1, . . . , xn).

• Once all of a vertex’s incoming edges have been appropriately labeled, that vertex’s
polynomial becomes the sum of the polynomials of the incoming edges.

• The polynomial associated with the final state 1 is the polynomial of the branching
program.

These rules are illustrated in figure 6.2. The idea is that the polynomial at each vertex
is nonzero on a set of inputs only if that set of inputs will lead the branching program to
that vertex.

.

.

.

.

.

.

.

.

.

.

.

.

OR

. . . }Collapse
OR

}log S

Figure 6.2: Constructing the polynomial of a branching program.

We can see that when the branching programs are read-once, the degree of a variable
in any monomial in the resulting polynomial will have power no larger than 1, and hence
the polynomial will be of degree at most n.

44

We now observe that given read-once branching programs B1 and B2, their correspond-
ing polynomials p1 and p2 are equivalent if and only if B1 and B2 are equivalent. To see
this, if any monomial m in p1 or p2 does not contain a variable xi we replace m with
mxi +m(1− xi). We can then write p1 and p2 as sums of terms of the form

∏n
i=1 yi, where

yi is either xi or (1 − xi). Each term corresponds to a path in the branching program
that ends in final state 1. From this, some extra thought reveals that equivalence of the
polynomials is equivalent to equivalence of the branching programs.

Notice also that if the branching programs are polynomial size, we can evaluate the
polynomials efficiently, even though they may contain an exponential number of coefficients.
All we need now is a method of testing equivalence of polynomials efficiently.

6.3 The Schwartz-Zippel Lemma

The tool we will use for this is the Schwartz-Zippel lemma, which states:

Lemma 32 If p(x1, . . . , xn) is an n-variate nonzero polynomial of degree d over a finite
field F, then p has at most dFn−1 roots. Equivalently, Pr[p(a1, . . . , an) = 0] ≤ d/F.

Notice that we use F to be both the field and its size.
Proof: The proof proceeds by induction on n. The base case of n = 1 is simply that of a
univariate polynomial and follows immediately.

Now consider p(x1, . . . , xn) of degree at most d. We can write

p(x1, . . . , xn) = p0(x2, . . . , xn) +x1p1(x2, . . . , xn) +x21p2(x2, . . . , xn) + . . .+xk1pk(x2, . . . , xn)

where k is the largest value for which pk is not identically zero.
We now observe that

|{a1, . . . , an} : p(a1, . . . , an) 6= 0| ≥ |{a1, . . . , an} : p(a1, . . . , an) 6= 0 and pk(a2, . . . , an) 6= 0|
By induction, pk is nonzero on at least Fn−1 − (d − k)Fn−2 points. Further, for each

such point a2, . . . , an, p(x1, a2, . . . , an) is a nonzero univariate polynomial and hence there
are at least F− k values of a1 such that p(a1, . . . , an) 6= 0.

Putting this together, we can bound the number of nonzero points from below by

Fn−1
(

1− d− k
F

)

F
(

1− k

F

)

≥ Fn
(

1− d

F

)

= Fn − dFn−1

This finishes the proof. 2

An algorithm for testing equivalence of polynomials and hence read-once branching
programs is now immediate. We choose a field of size at least 3d, and then choose random
a1, . . . , an from Fn. We accept if p1(a1, . . . , an) = p2(a1, . . . , an).

If the two polynomials are equivalent, then we always accept; otherwise reject with
probability at least 2/3, making this a coRP algorithm.

6.4 References

The Schwartz-Zippel theorem is from [Sch80, Zip79]. The algorithm for testing equivalence
of read-once branching programs is due to Blum, Chandra and Wegman [BCW80].

45

Exercises

1. Prove that testing equivalence of general branching programs is coNP-complete.

2. Show that every Boolean function f : {0, 1}n → {0, 1} can be computed by a read-once
branching program (possibly of exponential size).

46

Lecture 7

Unique-SAT

7.1 The Valiant-Vazirani Reduction

In this section we show the following: suppose there is an algorithm for the satisfiability
problem that always find a satisfying assignment for formulae that have exactly one sat-
isfiable assignment (and behaves arbitrarily on other instances): then we can get an RP
algorithm for the general satisfiability problem, and so NP = RP.

We prove the result by presenting a randomized reduction that given in input a CNF
formula φ produces in output a polynomial number of formulae ψ0, . . . , ψn. If φ is satisfiable,
then (with high probability) at least one of the ψi is satisfiable and has exactly one satisfying
assignment; if φ is not satisfiable, then (with probability one) all ψi are unsatisfiable.

The idea for the reduction is the following. Suppose φ is a satisfiable formula with n
variables that has about 2k satisfying assignments, and let h : {0, 1}n → {0, 1}k be a hash
function picked from a family of pairwise independent hash functions: then the average
number of assignments x such that φ(x) is true and h(x) = (0, . . . , 0) is about one. Indeed,
we can prove formally that with constant probability there is exactly one such assignment,1

and that there is CNF formula ψ (easily constructed from φ and h) that is satisfied precisely
by that assignment. By doing the above construction for values of k ranging from 0 to n,
we obtain the desired reduction. Details follow.

Definition 10 Let H be a family of functions of the form h : {0, 1}n → {0, 1}m. We say
that H is a family of pair-wise independent hash functions if for every two different inputs
x, y ∈ {0, 1}n and for every two possible outputs a, b ∈ {0, 1}m we have

Prh∈H [h(x) = a ∧ h(y) = b] =
1

22m

Another way to look at the definition is that for every x 6= y, when we pick h at random
then the random variables h(x) and h(y) are independent and uniformly distributed. In
particular, for every x 6= y and for every a, b we have Prh[h(x) = a|h(y) = b] = Prh[h(x) =
a].

1For technical reasons, it will be easier to prove that this is the case when picking a hash function
h : {0, 1}n → {0, 1}k+2.

47

For m vectors a1, . . . , am ∈ {0, 1}m and m bits b1, . . . , bm, define ha1,...,am,b1,...,bm :
{0, 1}n → {0, 1}m as ha,b(x) = (a1 · x + b1, . . . , am · x + bm), and let HAFF be the fam-
ily of functions defined this way. Then it is not hard to see that HAFF is a family of
pairwise independent hash functions.

Lemma 33 Let T ⊆ {0, 1}n be a set such that 2k ≤ |T | < 2k+1 and let H be a family of
pairwise independent hash functions of the form h : {0, 1}n → {0, 1}k+2. Then if we pick
h at random from H, there is a constant probability that there is a unique element x ∈ T
such that h(x) = 0. Precisely,

Prh∈H [|{x ∈ T : h(x) = 0}| = 1] ≥ 1

8

Proof: Let us fix an element x ∈ T . We want to compute the probability that x is the
unique element of T mapped into 0 by h. Clearly,

Prh[h(x) = 0∧∀y ∈ T−{x}.h(y) 6= 0] = Prh[h(x) = 0]·Prh[∀y ∈ T−{x}.h(y) 6= 0|h(x) = 0]

and we know that

Prh[h(x) = 0] =
1

2k+2

The difficult part is to estimate the other probability. First, we write

Prh[∀y ∈ T − {x}.h(y) 6= 0|h(x) = 0] = 1−Prh[∃y ∈ T − {x}.h(y) = 0|h(x) = 0]

And then observe that

Prh[∃y ∈ T − {x}.h(y) = 0|h(x) = 0]

≤
∑

y∈|T |−{x}
Prh[h(y) = 0|h(x) = 0]

=
∑

y∈|T |−{x}
Prh[h(y) = 0]

=
|T | − 1

2k+2

≤ 1

2

Notice how we used the fact that the value of h(y) is independent of the value of h(x) when
x 6= y.

Putting everything together, we have

Prh[∀y ∈ T − {x}.h(y) 6= 0|h(x) = 0] ≥ 1

2

and so

Prh[h(x) = 0 ∧ ∀y ∈ T − {x}.h(y) 6= 0] ≥ 1

2k+3

48

To conclude the argument, we observe that the probability that there is a unique element
of T mapped into 0 is given by the sum over x ∈ T of the probability that x is the unique
element mapped into 0 (all this events are disjoint, so the probability of their union is the
sum of the probabilities). The probability of a unique element mapped into 0 is then at
least |T |/2k+3 > 1/8. 2

Lemma 34 There is a probabilistic polynomial time algorithm that on input a CNF formula
φ and an integer k outputs a formula ψ such that

• If φ is unsatisfiable then ψ is unsatisfiable.
• If φ has at least 2k and less than 2k+1 satifying assignments, then there is a probability
at least 1/8 then the formula ψ has exactly one satisfying assignment.

Proof: Say that φ is a formula over n variables. The algorithm picks at random vectors
a1, . . . , ak+2 ∈ {0, 1}n and bits b1, . . . , bk+2 and produces a formula ψ that is equivalent to
the expression φ(x)∧(a1 ·x+b1 = 0)∧ . . .∧(ak+2 ·x+bk+2 = 0). Indeed, there is no compact
CNF expression to compute a · x if a has a lot of ones, but we can proceed as follows: for
each i we add auxiliary variables yi1, . . . , y

i
n and then write a CNF condition equivalent to

(yi1 = x1 ∧ ai[1]) ∧ · · · ∧ (yin = yin−1 ⊕ (xn ∧ ai[n]⊕ bi))). Then ψ is the AND of the clauses
in φ plus all the above expressions for i = 1, 2, . . . , k + 2.

By construction, the number of satisfying assignments of ψ is equal to the number of
satisfying assignments x of φ such that ha1,...,ak+2,b1,...,bk+2

(x) = 0. If φ is unsatisfiable, then,
for every possible choice of the ai, ψ is also unsatisfiable.

If φ has between 2k and 2k+1 assignments, then Lemma 33 implies that with probability
at least 1/8 there is exactly one satisfying assignment for ψ. 2

Theorem 35 (Valiant-Vazirani) Suppose there is a polynomial time algorithm that on
input a CNF formula having exactly one satisfying assignment finds that assignment. (We
make no assumption on the behaviour of the algorithm on other inputs.) Then NP = RP.

Proof: It is enough to show that, under the assumption of the Theorem, 3SAT has an
RP algorithm.

On input a formula φ, we construct formulae ψ0, . . . , ψn by using the algorithm of Lemma
34 with parameters k = 0, . . . , n. We submit all formulae ψ0, . . . , ψn to the algorithm in the
assumption of the Theorem, and accept if the algorithm can find a satisfying assignment
for at least one of the formulae. If φ is unsatisfiable, then all the formulae are always
unsatisfiable, and so the algorithm has a probability zero of accepting. If φ is satisfiable,
then for some k it has between 2k and 2k+1 satisfying assignments, and there is a probability
at least 1/8 that ψk has exactly one satisfying assignment and that the algorithm accepts.
If we repeat the above procedure t times, and accept if at least one iteration accepts, then if
φ is unsatisfiable we still have probability zero of accepting, otherwise we have probability
at least 1− (7/8)t of accepting, which is more than 1/2 already for t = 6. 2

7.2 References

The Valiant-Vazirani result is from [VV86].

49

Exercises

1. Prove that HAFF is indeed a family of a pair-wise independent hash functions.

2. Change the assumption of Theorem 35 to having a probabilistic polynomial time al-
gorithm that on input a formula with exactly one satisfying assignment finds that
assignment with probability at least 1/2. Prove that it still follows that NP = RP.

50

Lecture 8

Counting Problems

8.1 Counting Classes

Definition 11 R is an NP-relation, if there is a polynomial time algorithm A such that
(x, y) ∈ R⇔ A(x, y) = 1 and there is a polynomial p such that (x, y) ∈ R⇒ |y| ≤ p(|x|).

#R is the problem that, given x, asks how many y satisfy (x, y) ∈ R.

Definition 12 #Pis the class of all problems of the form #R, where R is an NP-relation.

Observe that an NP-relation R naturally defines an NP language LR, where LR = {x : x ∈
R(x, y)}, and every NP language can be defined in this way. Therefore problems in #P can
always be seen as the problem of counting the number of witnesses for a given instance of
an NP problem.

Unlike for decision problems there is no canonical way to define reductions for counting
classes. There are two common definitions.

Definition 13 We say there is a parsimonious reduction from #A to #B (written #A ≤par

#B) if there is a polynomial time transformation f such that for all x, |{y, (x, y) ∈ A}| =
|{z : (f(x), z) ∈ B}|.

Often this definition is a little too restrictive and we use the following definition instead.

Definition 14 #A ≤ #B if there is a polynomial time algorithm for #A given an oracle
that solves #B.

#CIRCUITSAT is the problem where given a circuit, we want to count the number of
inputs that make the circuit output 1.

Theorem 36 #CIRCUITSAT is #P-complete under parsimonious reductions.

Proof: Let #R be in #Pand A and p be as in the definition. Given x we want to construct
a circuit C such that |{z : C(z)}| = |{y : |y| ≤ p(|x|), A(x, y) = 1}|. We then construct Ĉn
that on input x, y simulates A(x, y). From earlier arguments we know that this can be done
with a circuit with size about the square of the running time of A. Thus Ĉn will have size
polynomial in the running time of A and so polynomial in x. Then let C(y) = Ĉ(x, y). 2

51

Theorem 37 #3SATis #P-complete.

Proof: We show that there is a parsimonious reduction from #CIRCUITSAT to #3-
SAT. That is, given a circuit C we construct a Boolean formula φ such that the number
of satisfying assignments for φ is equal to the number of inputs for which C outputs 1.
Suppose C has inputs x1, . . . , xn and gates 1, . . . ,m and φ has inputs x1, . . . , xn, g1, . . . , gm,
where the gi represent the output of gate i. Now each gate has two input variables and one
output variable. Thus a gate can be complete described by mimicking the output for each
of the 4 possible inputs. Thus each gate can be simulated using at most 4 clauses. In this
way we have reduced C to a formula φ with n+m variables and 4m clauses. So there is a
parsimonious reduction from #CIRCUITSAT to #3SAT. 2

Notice that if a counting problem #R is #P-complete under parsimonious reduc-
tions, then the associated language LR is NP-complete, because #3SAT ≤par #R implies
3SAT ≤ LR. On the other hand, with the less restrictive definition of reducibility, even
some counting problems whose decision version is in P are #P-complete. For example, the
problem of counting the number of satisfying assignments for a given 2CNF formula and
the problem of counting the number of perfect matchings in a given bipartite graphs are
both #P-complete.

8.2 Complexity of counting problems

We will prove the following theorem:

Theorem 38 For every counting problem #A in #P, there is an algorithm C that on input
x, compute with high probability a value v such that

(1− ε)#A(x) ≤ v ≤ (1 + ε)#A(x)

in time polynomial in |x| and in 1
ε , using an oracle for NP.

The theorem says that #P can be approximate in BPPNP. We have a remark here
that approximating #3SAT is NP-hard. Therefore, to compute the value we need at least
the power of NP, and this theorem states that the power of NP and randomization is
sufficient.

Another remark concerns the following result.

Theorem 39 (Toda) For every k, Σk ⊆ P#P.

This implies that #3SAT is Σk-hard for every k, i.e., #3SAT lies outside PH, unless
the hierarchy collapses. Recall that BPP lies inside Σ2, and hence approximating #3SAT
can be done in Σ3. Therefore, approximating #3SAT cannot be equivalent to computing
#3SAT exactly, unless the polynomial hierarchy collapses.

We first make some observations so that we can reduce the proof to an easier one.

• It is enough to prove the theorem for #3SAT.

If we have an approximation algorithm for #3SAT, we can extend it to any #A in
#P using the parsimonious reduction from #A to #3SAT.

52

• It is enough to give a polynomial time O(1)-approximation for #3SAT.

Suppose we have an algorithm C and a constant c such that

1

c
#3SAT(ϕ) ≤ C(ϕ) ≤ c#3SAT(ϕ).

Given ϕ, we can construct ϕk = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk. If ϕ has t satisfying assignments,
ϕk has tk satisfying assignments. Then, giving ϕk to the algorithm we get

1

c
tk ≤ C(ϕk) ≤ ctk

(
1

c

)1/k

t ≤ C(ϕk)1/k ≤ c1/kt.

If c is a constant and k = O(1ε), c
1/k = 1 + ε.

• For a formula ϕ that has O(1) satisfying assignments, #3SAT(ϕ) can be found in

PNP.

This can be done by iteratively asking the oracle the questions of the form: “Are there
k assignments satisfying this formula?” Notice that these are NP questions, because
the algorithm can guess these k assignments and check them.

8.3 An approximate comparison procedure

Consider the following approximate comparison procedure a-comp defined as:

a-comp(ϕ, k) =







YES if #3SAT(ϕ) ≥ 2k+1

NO if #3SAT(ϕ) < 2k

whatever otherwise

Given a-comp, we can construct an algorithm that 2-approximates #3SAT as follows:

Input: ϕ

compute:
a-comp(ϕ, 1)
a-comp(ϕ, 2)
a-comp(ϕ, 3)
...
a-comp(ϕ, n)

if a-comp outputs NO from the first time then
// The value is either 0 or 1.
// The answer can be checked by one more query to the NP oracle.
Query to the oracle and output an exact value.

53

else
Suppose that it outputs YES for t = 1, . . . , i− 1 and NO for t = i
Output 2i

We need to show that this algorithm approximates #3SAT within a factor of 2. If a-comp
answers NO from the first time, the algorithm outputs the right answer because it checks
for the answer explicitly. Now suppose a-comp says YES for all t = 1, 2, . . . , i − 1 and
says NO for t = i. Since a-comp(ϕ, i − 1) outputs YES, #3SAT(ϕ) ≥ 2i−1, and also since
a-comp(ϕ, 2i) outputs NO, #3SAT(ϕ) < 2i+1. The algorithm outputs a = 2i. Hence,

1

2
a ≥ #3SAT(ϕ) < 2 · a

and the algorithm outputs the correct answer with in a factor of 2.

Thus, to establish the theorem, it is enough to give a BPPNP implementation of the
a-comp.

8.4 Constructing a-comp

The procedure and its analysis is similar to the Valiant-Vazirani reduction: for a given
formula φ we pick a hash function h from a pairwise independent family, and look at the
number of assignments x that satisfy h and such that h(x) = 0.

In the Valiant-Vazirani reduction, we proved that if S is a set of size approximately
equal to the size of the range of h(), then, with constant probability, exactly one element
of S is mapped by h() into 0. Now we use a different result, a simplified version of the
Leftover Hash Lemma proved by Impagliazzo, Levin, and Luby in 1989, that says that if S
is sufficiently larger than the range of h() then the number of elements of S mapped into 0
is concentrated around its expectation.

Lemma 40 (The Leftover Hash Lemma) Let H be a family of pairwise independent
hash functions h : {0, 1}n → {0, 1}m. Let S ⊂ 0, 1n, |S| ≥ 4·2m

ε2
. Then,

Prh∈H

[∣
∣
∣
∣
|{a ∈ S : h(a) = 0}| − |S|

2m

∣
∣
∣
∣
≥ ε |S|

2m

]

≤ 1

4
.

From this, a-comp can be constructed as follows.

input: ϕ, k

if k ≤ 5 then check exactly whether #3SAT(ϕ) ≥ 2k.
if k ≥ 6,

pick h from a set of pairwise independent hash functions h : {0, 1}n → {0, 1}m,
where m = k − 5

answer YES iff there are more then 48 assignments a to ϕ such that
a satisfies ϕ and h(a) = 0.

54

Notice that the test at the last step can be done with one access to an oracle toNP. We will

show that the algorithm is in BPPNP. Let S ⊆ {0, 1}n be the set of satisfying assignments
for ϕ. There are 2 cases.

• If |S| ≥ 2k+1, by the Leftover Hash Lemma we have:

Prh∈H

[∣
∣
∣
∣
|{a ∈ S : h(a) = 0}| − |S|

2m

∣
∣
∣
∣
≤ 1

4
· |S|

2m

]

≤ 3

4
,

(set ε = 1
2 , and |S| ≥ 4·2m

ε2
= 64 · 2m, because |S| ≥ 2k+1 = 2m+6)

Prh∈H

[

|{a ∈ S : h(a) = 0}| ≤ 3

4
· |S|

2m

]

≥ 3

4
,

Prh∈H [|{a ∈ S : h(a) = 0}| ≥ 48] ≥ 3

4
,

which is the success probability of the algorithm.

• If |S| < 2k:

Let S′ be a superset of S of size 2k. We have

Prh∈H [answer YES] = Prh∈H [|{a ∈ S : h(s) = 0}| ≥ 48]

≤ Prh∈H [
∣
∣
{
a ∈ S′ : h(s) = 0

}∣
∣ ≥ 48]

≤ Prh∈H
[∣
∣
∣

∣
∣
{
a ∈ S′ : h(s) = 0

}∣
∣− |S′|2m

∣
∣
∣ ≥ |S′|

2·2m
]

≤ 1

4

(by L.H.L. with ε = 1/2, |S ′| = 32 · 2m.)

Therefore, the algorithm will give the correct answer with probability at least 3/4, which
can then be amplified to, say, 1− 1/4n (so that all n invocations of a-comp are likely to be
correct).

8.5 The proof of the Leftover Hash Lemma

We finish the lecture by proving the Leftover Hash Lemma.

Proof: We will use Chebyshev’s Inequality to bound the failure probability. Let S =
{a1, . . . , ak}, and pick a random h ∈ H. We define random variables X1, . . . , Xk as

Xi =

{

1 if h(ai) = 0

0 otherwise.

55

Clearly, |{a ∈ S : h(a) = 0}| = ∑

iXi.
We now calculate the expectations. For each i, Pr[Xi = 1] = 1

2m and E[Xi] = 1
2m .

Hence,

E[
∑

i

Xi] =
|S|
2m

.

Also we calculate the variance

Var[Xi] = E[X2
i]−E[Xi]

2

≤ E[X2
i]

= E[Xi] =
1

2m
.

Because X1, . . . , Xk are pairwise independent,

Var

[
∑

i

Xi

]

=
∑

i

Var[Xi] ≤
|S|
2m

.

Using Chebyshev’s Inequality, we get

Pr

[∣
∣
∣
∣
|{a ∈ S : h(a) = 0}| − |S|

2m

∣
∣
∣
∣
≥ ε |S|

2m

]

= Pr

[∣
∣
∣
∣
∣

∑

i

Xi −E[
∑

i

Xi]

∣
∣
∣
∣
∣
≥ εE[

∑

i

Xi]

]

≤ Var[
∑

iXi]

ε2E[
∑

iXi]2
≤

|S|
2m

ε2
|S|2

(2m)2

=
2m

ε2 |S| ≤
1

4
.

2

8.6 Approximate Sampling

So far we have considered the following question: for an NP-relation R, given an input x,
what is the size of the set Rx = {y : (x, y) ∈ R}? A related question is to be able to sample
from the uniform distribution over Rx.

Whenever the relation R is “downward self reducible” (a technical condition that we
won’t define formally), it is possible to prove that there is a probabilistic algorithm running
in time polynomial in |x| and 1/ε to approximate within 1 + ε the value |Rx| if and only if
there is a probabilistic algorithm running in time polynomial in |x| and 1/ε that samples a
distribution ε-close to the uniform distribution over Rx.

We show how the above result applies to 3SAT (the general result uses the same proof
idea). For a formula φ, a variable x and a bit b, let us define by φx←b the formula obtained
by substituting the value b in place of x.1

1Specifically, φx←1 is obtained by removing each occurrence of ¬x from the clauses where it occurs, and
removing all the clauses that contain an occurrence of x; the formula φx←0 is similarly obtained.

56

If φ is defined over variables x1, . . . , xn, it is easy to see that

#φ = #φx←0 + #φx←1

Also, if S is the uniform distribution over satisfying assignments for φ, we note that

Pr(x1,...,xn)←S [x1 = b] =
#φx←b

#φ

Suppose then that we have an efficient sampling algorithm that given φ and ε generates
a distribution ε-close to uniform over the satisfying assignments of φ.

Let us then ran the sampling algorithm with approximation parameter ε/2n and use it to
sample about Õ(n2/ε2) assignments. By computing the fraction of such assignments having
x1 = 0 and x1 = 1, we get approximate values p0, p1, such that |pb − Pr(x1,...,xn)←S [x1 =
b]| ≤ ε/n. Let b be such that pb ≥ 1/2, then #φx←b/pb is a good approximation, to within
a multiplicative factor (1 + 2ε/n) to #φ, and we can recurse to compute #φx←b to within
a (1 + 2ε/n)n−1 factor.

Conversely, suppose we have an approximate counting procedure. Then we can approx-
imately compute pb = #φx←b

#φ , generate a value b for x1 with probability approximately pb,
and then recurse to generate a random assignment for #φx←b.

The same equivalence holds, clearly, for 2SAT and, among other problems, for the
problem of counting the number of perfect matchings in a bipartite graph. It is known
that it is NP-hard to perform approximate counting for 2SAT and this result, with the
above reduction, implies that approximate sampling is also hard for 2SAT. The problem
of approximately sampling a perfect matching has a probabilistic polynomial solution, and
the reduction implies that approximately counting the number of perfect matchings in a
graph can also be done in probabilistic polynomial time.

The reduction and the results from last section also imply that 3SAT (and any other
NP relation) has an approximate sampling algorithm that runs in probabilistic polynomial
time with an NP oracle. With a careful use of the techniques from last week it is indeed
possible to get an exact sampling algorithm for 3SAT (and any other NP relation) running
in probabilistic polynomial time with an NP oracle. This is essentially best possible, be-
cause the approximate sampling requires randomness by its very definition, and generating
satisfying assignments for a 3SAT formula requires at least an NP oracle.

8.7 References

The class #P was defined by Valiant [Val79]. An algorithm for approximate counting within
the polynomial hierarchy was developed by Stockmeyer [Sto83]. The algorithm presented
in these notes is taken from lecture notes by Oded Goldreich. The left-over hash lemma
is from [HILL99]. The problem of approximate sampling and its relation to approximate
counting is studied in [JVV86].

57

Lecture 9

Average-Case Complexity of the
Permanent

9.1 The Permanent Problem

The permanent is a number assigned to a matrix M ∈ R, for a ring R, according to the
formula

perm(M) =
∑

π∈Sn

n∏

i=1

Mi,π(i)

where Sn is the group of permutations on n items. The definition of the permanent closely
resembles that of the determinant; the only difference is that the determinant has a co-
efficient (−1)sgn(π) in front of the product. However, this resemblance is deceptive: the
determinant can be calculated in polynomial time, whereas Permanent is #P-complete.

Claim 41 Let R = Z and let M be a 0/1 matrix, which we think of as representing a
bipartite graph G = (U, V,E) with |U | = |V | = n as follows: number both edge sets U and
V , separately, by 1, 2, . . . n, and let Mi,j be 1 if edge (i, j) ∈ E, and 0 otherwise. Then
perm(M) is the number of perfect matchings in G.

Proof: Each π ∈ Sn is a potential perfect matching, in that it can be thought of as a
bijection between U and V . This corresponds to an actual perfect matching iff all edges
(i, π(i)) are in E, i.e. if Mi,π(i) = 1 for all i, which is equivalent to saying that

∏n
i=1Mi,π(i) =

1. Thus we get a summand of 1 in the formula for perm(M) for each perfect matching of
G. 2

Suppose we allow the entries of M to be nonnegative integers. Then M represents a
bipartite graph where the edges have multiplicity given by the entries of M . It still makes
sense to interpret perm(M) as the number of permanent matchings, because the product
of the multiplicities of the edges of a matching is the number of ways of realizing that
matching.

Note that in Z2, perm(M) = det(M) and thus is polynomial time. But for sufficiently
large moduli (or no modulus at all) it’s #P-complete.

58

9.2 Worst-case to Average-case Equivalence

Theorem 42 Suppose for fixed n and F , |F| > nO(1), we can compute perm(M) on a
fraction 1− 1

2n of the inputs M in polynomial time. Then there is a (worst-case) polynomial
time probabilistic algorithm for computing perm(M).

Rather than proving this theorem directly, we will just observe that perm(M) is a degree
n polynomial in indeterminates M11,M12, . . . ,M1n, . . . ,Mnn, and prove the following much
more general result.

Theorem 43 Suppose we have oracle access to a function f : Fn → F and f agreees with
some degree d polynomial p : Fn → F on a fraction 1− 1

3d+3 of its inputs where |F| ≥ d+2.
Then we can compute f(x) with high probability for all x ∈ Fn in poly(n, d) time, assuming
field operations can be performed in poly(n, d) time.

Proof: Suppose that we input x ∈ Fn and pick y ∈ Fn uniformly at random. Consider
the line l(t) = x+ ty. Each point of l is uniformly distributed except x = l(0). Now,

Pr[p(l(i)) = f(l(i)) for i = 1, 2, . . . , d+ 1] = 1− Pr[∃i ∈ 1, . . . , d+ 1 : p(l(i)) 6= f(l(i))]

≥ 1− d+ 1

3(d+ 1)
=

2

3

Now q(t) = p(l(t)) is a degree d polynomial in t, and we know d+ 1 of its values, so we can
interpolate the others. Thus we have the following algorithm:

input: x,
pick random y ∈ Fn
find univariate degree-d polynomial q() such that
q(i) = p(x+ iy) for i = 1, . . . , d+ 1

return (q(0))

This runs in poly(n, d) time, and with probability ≥ 2
3 , it outputs p(x). 2

We can strengthen our result to hold even if p(x) only agrees with f(x) on 3
4 + ε of

its inputs. This stronger proof depends on the following theorem, due to Berlekamp and
Welch.

Theorem 44 Let q : F → F be a polynomial of degree d. Say we are given m pairs
(a1, b1), . . . , (am, bm) such that for fewer than m−d

2 pairs (ai, bi), bi 6= q(ai). Then q can be
reconstructed with poly(n, d) field operations.

Now, as promised, we apply Berlekamp-Welch to strengthen our main theorem:

Theorem 45 Suppose we have oracle access to a function f : Fn → F and f agreees with
some degree d polynomial p : Fn → F on a fraction 3

4 + ε of its inputs where |F| ≥ 1 + d/ε.
Then we can compute p(x) with high probability for all x ∈ Fn in poly(n, d) time, assuming
field operations can be performed in poly(n, d) time.

59

Proof: Consider the following algorithm:

input: x,
pick random y ∈ Fn
find degree-d univariate polynomial q() such that
|{t ∈ F − {0} : q(t) 6= f(x+ ty)}| < (|F| − 1− d)/2

halt and fail if no such polynomial exists
return (q(0))

If q(t) = p(l(t)) and f(l(t)) disagree on < |F |−d−1
2 values of t, Berlekamp-Welch will

find q(t) ≡ p(l(t)) and the algorithm succeeds (and in polynomial time). So, assuming only
1
4 − ε of our points disagree, we need to show that less than half of our runs fail.

E [# values of t ∈ F − {0} with p(l(t)) 6= f(l(t))] =
∑

t6=0

E

[{
0 if p(l(t)) = f(l(t))
1 otherwise

]

≤ (|F| − 1)

(
1

4
− ε
)

To clean up the notation let us use m = |F| − 1. The previous expression and Markov’s
inequality tell us that

Pr

[

|{t ∈ F − {0} : p(l(t)) 6= f(l(t))}| > m− d
2

]

≤ m(14 − ε)
m−d
2

≤ 1

2
− ε

2
if m ≥ d

ε

Thus, our algorithm succeeds more than half the time, so it can be repeated to yield any
degree of accuracy we wish. 2

9.3 References

The simple algorithm to reconstruct a polynomial from a faulty oracle is due to Beaver and
Feigenbaum [BF90], and the more sophisticated version that uses error-correction is due
to [GLR+91]. The use of polynomial reconstruction algorithms in the average-case com-
plexity of the permanent due to Lipton [Lip90]. The Berlekamp-Welch algorithm [WB86]
is a polynomial time algorithm to reconstruct a univariate polynomial from faulty data.

60

Lecture 10

Average-case Complexity of
Problems in PSPACE and EXP

10.1 Average-case Complexity in PSPACE and EXP for 7/8
Fraction of Inputs

Lemma 46 (Multivariate Interpolation) Let F be a field, H ⊆ F a subset and f :
Hm → F an arbitrary function. Then there is a m-variate polynomial p of degree at most
m|H| such that p(x) = f(x) for every x ∈ Hm. Furthermore, the value p(x) can be computed
using time polynomial in |F|m and space logarithmic in |F|m given oracle access to f .

Let L be an EXP-complete problem (the same construction and reasoning can be re-
peated with a PSPACE-complete problem), and for every n let Ln : {0, 1}n → {0, 1} the
characteristic function of L on inputs of length n. We will construct another EXP-complete
problem L′ such that for every n there is a n′ = O(n) such that the truth-table of L′n′ is
the encoding of the truth-table of Ln using a concatenation of Reed-Muller and Hadamard
codes. Then we will be able to show that L′ is as hard in the worst case as it is hard on
average.

Let us fix an input length n.
Let k = 3dlogne, and let F be a field of size 2k = O(n3). We will identify elements

of F with vectors of {0, 1}k and, in particular, the zero element of F is mapped into
(0, . . . , 0) and the one element of F is mapped into (1, 0, . . . , 0). Let H ⊆ F be a subset
of size 2k/3. Let m = 3n/k, then Hm contains at least 2n elements and there is some
efficiently computable injective function h : {0, 1}n → Hm. From Lemma 46 it follows
that there is a multivariate polynomial p of total degree at most O(n2/ log n) such that
p(h(x)) = Ln(x) for all x ∈ {0, 1}n. Let f : Fm × {0, 1}k → {0, 1} the function such
that f(x1, . . . , xm, a) = p(x1, . . . , xm) · a, where we abused notation a little by viewing
p(x1, . . . , xm) as an element of {0, 1}k. With similar abuse, we can view f as a function
f : {0, 1}3n+k → {0, 1}; we define the language L′ such that f is the characteristic function
of L′ on inputs of length 3n + 3dlog ne. Clearly, L′ is EXP-complete, because for every
x ∈ Bn we have x ∈ L if and only if p(h(x)) = 1, which holds if and only if (h(x),1) ∈ L′,
where 1 = (1, 1, . . . , 1).

61

Theorem 47 Let p : Fm → F be a degree d polynomial, let us identify elements of F with
elements of {0, 1}k, and let f : {0, 1}km+k → {0, 1} be such that f(x, a) = p(x) · a. Suppose
we are given oracle access to g : {0, 1}km+k → {0, 1} such that f and g agree on at least a
fraction 7/8 + ε of the inputs, where |F| ≥ 1 + max{4/ε2, d/4ε}. Then we can compute p(x)
for every x in time polynomial in m, |F | and 2k.

Proof: For every x, define c(x) to be the value that maximizes Pra[c(x) · a = f(x, a)],
and break ties arbitrarily if the maximum is not unique. Notice that c(x) can be computed
in time polynomial in 2k. For random (x, a), f(x, a) 6= g(x, a) with probability at most
1/8− ε, so it follows that

Prx[Pra[f(x, a) 6= g(x, a)] ≥ 1/4] ≤ 1/2− 4ε

So for at least a 1/2 + 4ε fraction of the xs, we have g(x, a) = f(x, a) = p(x) · a for more
than 3/4 of the as. For each such x, then, p(x) = c(x). The function c() has then agreement
1/2 + ε with p(), which means that, by previous results, we can compute p() everywhere
using c(). 2

Note that the above theorem is essentially giving a poly-logarithmic time decoding
procedure for the concatenation of the Reed-Muller code with the Hadamard code. The
procedure first decodes the Hadamard code locally, and then simulates the procedure for
decoding the Reed-Muller code using the results of the Hadamard decoding. The Reed-
Muller decoding needs the number of errors to be less than 1/2, and the Hadamard decoding
needs the number of errors to be less than 1/4, so the overall procedure needs the number
of errors to be less than 1/8.

In order to state the application of the previous theorem to the average-case hardness
of problems in PSPACE and EXP, let us define avgBPTIMEp(n)(t(n)) to be the class
of decision problems L for which there is a probabilistic algorithm A running in time t(n)
such that for every input length n

Prx∈{0,1}n [Prr[A(x, r) = Ln(x)] ≥ 3/4] ≥ p(n)

In other words, avgBPPp(n)(t(n)) contains all problems that can be solved on at least a p(n)
fraction of the inputs by BPP-type algorithms in time t(n). Notice that avgBPP1(t(n)) =
BPP(t(n)).

Corollary 48 Suppose that EXP ⊆ avgBPP7/8+1/n

(
nO(1)

)
, then EXP = BPP. Suppose

that PSPACE ⊆ avgBPP7/8+1/n

(
nO(1)

)
, then PSPACE = BPP.

10.2 Coding-Theoretic Perspective

The construction of the previous section can be abstracted as follows: starting from a
language L and an input length n, we encode the characteristic function Ln : {0, 1}n →
{0, 1} of L on inputs of length n as a function fL : {0, 1}O(n) → {0, 1}, and then we argue
that given a procedure that computes g on a 1− δ fraction of inputs, with δ < 1/8 we can
reconstruct Ln everywhere.

62

The construction can be carried over for every Ln, and we can see that, in order for the
theorem to hold, it must be the case that if we have to different functions Ln, L

′
n : {0, 1}n →

{0, 1} then the functions fL and fL′ must differ in at least a 2δ fraction of inputs, otherwise
it would not be possible to reconstruct fL given only a function g that has agreement 1− δ
with fL. In fact, the encoding of Ln into fL is a concatenation of a Reed-Muller code with
a Hadamard code, and its minimum relative distance is almost 1/2.

Now suppose we are trying to prove that EXP contains languages that hard to compute
even on a 1/2 + ε fraction of inputs. By the above argument, we need an encoding that will
map two different languages into two boolean functions that differ in at least 1−2ε fraction
of points. Unfortunately, this is impossible: there is no error-correcting code with relative
minimum distance bigger than 1/2 (except for trivial codes containing a small constant
number of codewords), which means that the unique reconstruction problem is possible
only if there are less than a 1/4 fraction of errors.1

In order to prove stronger hardness results, we need to stop looking for unique decoding
procedures, and start looking for list decoding procedures instead. In the list decoding
problem for a code C : {0, 1}n → {0, 1}m, we are given a received string z ∈ {0, 1}m, and
we believe that less than a δ fraction of errors occurred, and we want to compute the list
of all possible messages x ∈ {0, 1}n such that C(x) and z are at distance less than δ. If
the list is small and it can be produced efficiently, it gives a lot of information about the
original message.

We will state without proof a list-decoding result about the Hadamard code and one
about the Reed-Muller code.

Lemma 49 Given g : {0, 1}k → {0, 1} and ε > 0, there are at most 1/4ε2 strings a ∈ {0, 1}k
such that Prx[g(x) = a · x] ≥ 1/2 + ε.

For the Hadamard code, the list can be find by brute force in time polynomial in the
length of the encoding. Goldreich and Levin show that, given oracle access to f , the list
can even be found in time polynomial in k and 1/ε (by a randomized algorithm, with high
probability), although we will not need such a stronger result in our applications.

Theorem 50 (Sudan) Let F be a field, d a degree parameter, and 1 > α >
√

2d/m be
an accuracy parameter. Then there is a polynomial time algorithm that on input pairs of
field elements (a1, b1), . . . , (am, bm) finds a list of all univariate polynomials q() of degree
≤ d such that q(ai) = bi for at least αm pairs. Furthermore, the list contains at most 2/α
polynomials.

In the next section we will see how to use Sudan’s algorithm to achieve a form of
list-decoding of Reed-Muller code even given a 1 − ε fraction of errors. Since we can do
list-decoding of the Hadamard code with up to 1/2 − ε errors, it should be intuitive that
the combination of the two procedures will give a decoding for the concatenation of the two
codes that will work with 1/2−epsilon′ fraction of errors. Using non-uniformity, we will be
able pick the right decoding from the list of possible decodings by hard-wiring the choice

1Note that there is still some margin of improvement, because our reconstruction procedure works only
with less than a 1/8 fraction of errors.

63

in the circuit performing the reconstruction. This will show that if every problem in EXP
can be solved by small circuits on 1/2 + ε fraction of inputs, then all problems in EXP can
be solved by small circuits on all inputs.

10.3 Average-case Complexity in PSPACE and EXP for 1/2

Fraction of Inputs

Let us recall a (weaker version of a) result from a past lecture. It was stated in terms
of probabilistic procedures, but it holds for a stronger reason in terms of small circuits.
(Because we have seen that probabilistic procedures can always be simulated by circuits.)

Theorem 51 Let p : Fm → F be a polynomial of degree d, |F| > 16d, and let f : Fm → F
be a function that agrees with p on a 7/8 fraction of inputs. Then there is an oracle circuit
C of size polynomial in m and |F| such that Cf (x) = p(x) for every x.

Here is the multivariate list-decoding result. We state it as a non-uniform unique re-
construction procedure.

Theorem 52 Let p : Fm → F be a polynomial of degree d, |F| ≥ 1 + 8d/ε2, and let
f : Fm → F be a function that agrees with p on at least an ε fraction of inputs, with
|F| ≥ 1 + 8d/ε2. Then there is an oracle circuit C of size polynomial in m and |F| such
that Cf (x) = p(x) for every x.

Proof: We will just show the existence of a polynomial size circuit that computes p() on
a 7/8 fraction of inputs, and then invoke Theorem 51.

Let us pick x and y at random in Fm, we want to argue that knowing p(y) will help us
compute p(x). The following procedure does that.

input: x, y, p(y)
consider line l(t) = tx+ (1− t)y and find set Q of

all degree-d univariate polynomials q such that
|{t ∈ F : q(t) = f(tx+ (1− t)y)}| > ε|F|/2

if there is unique q∗ ∈ Q such that q∗(0) = p(y) return q∗(1)
otherwise fail

By our assumption on F , d, and ε, we have ε/2 >
√

2d/|F|, so the above algorithm can
be implemented by a circuit C of size polynomial in m and |F|. Now we want to argue that
the algorithm is quite effective.

Claim 53 Prx,y[C
f (x, y, p(y)) = p(x)] ≥ 7/8.

Before proving the claim, let us see that, once the claim is proved, we are done. By an
averaging argument, there is a y such that

Prx[Cf (x, y, p(y)) = p(x)] ≥ 7/8.

64

Then we just have to hard-wire y and p(y) into C, and we have a circuit that computes p()
on a 7/8 fraction of inputs, and we can invoke Theorem 51 and we are done. Now we prove
the claim.
Proof: [Of Claim] First of all, note that when we pick x and y at random, the points on
the line l(t) = tx + (1 − t)y are pairwise independent. Therefore, there is a probability at
least 15/16 then there are at least |F|ε− 4

√

|F| points on the line where f agrees with p,
and this number is at least ε/2 by our assumptions on F , d and ε.

So, except with probability 1/16, the polynomial q∗ such that q∗(t) = p(l(t)) is part of
the list Q constructed by the algorithm. It remains to see that it is the unique one such that
q(0) = p(y). Notice that each other polynomial q ∈ Q agrees with q∗ in at most d points of
the line, so, on a random point of the line, q∗ has a probability at least 1− (|Q|−1)d/|F| of
having a value different from the one of all other polynomials in Q on that random point.
Well, y was a random point, but it is not exactly a random point on l(): by definition,
indeed, y = l(0). Can we still argue that y is as good as a random point of the line in
distinguishing q∗() from the other polynomials in Q?

To see that this is the case, let us pick the points x, y in a different (but equivalent)
way: let us first pick two random points x′, y′ ∈ Fm, then consider the line l′(t) = tx′ +
(1 − t)y′, and finally pick two random points a, b ∈ F on the line and call x = l′(a) and
y = l′(b). Surely, x and y picked in this way are uniformly distributed. What about the
line l(t) = tx + (1 − t)y? It is the same line as l′(), just with a different parameterization:
we have l(t) = l′(t(a− b) + b). So for each polynomial q ∈ Q such that q(t) has agreement
ε/2 with p(l(t)) there is a corresponding polynomial q′(t) = q(t(a − b) + b)) such that
q′(t) has agreement ε/2 with p(l′(t)) and we can call Q′ the list of such polynomials. Let
q′∗(t) = q∗(t(a − b) + b)), then we have that q∗ is the unique polynomial in Q such that
q(0) = p(y) if and only if q′∗ is the unique polynomial in Q′ such that q′∗(b) = p(y). In the
latter case, it is clear that we are looking at random point, and so the probability that q∗

is isolated is at least 1− (|Q| − 1)d/|F| which is at least 15/16.
Overall, the success probability of the algorithm is at least 7/8 and the claim is proved.

2

2

We can now move to the concatenated version.

Theorem 54 Let p : Fm → F be a degree d polynomial, let us identify elements of F with
elements of {0, 1}k, and let f : {0, 1}km+k → {0, 1} be such that f(x, a) = p(x) · a. Suppose
we are given oracle access to g : {0, 1}km+k → {0, 1} such that f and g agree on at least a
fraction 1/2 + ε of the inputs, where |F| ≥ 8d/ε6. Then there is an oracle circuit C of size
polynomial in m, |F | and 2k such that Cg computes p() everywhere.

Proof: It will be enough to show how to compute p on a fraction ε3 of the inputs.
For every x, let S(x) ⊆ {0, 1}k be the list of all strings c such that g(x, a) and cȧ agree

on a fraction at least 1/2 + ε/2 of the values a ∈ {0, 1}k. Notice that S(x) is computable
in time polynomial in 2k and that it contains at most 1/ε2 elements. A Markov argument
shows that

65

Prx[Pra[g(x, a) = p(x) · a] ≥ 1/2 + ε/2] ≥ ε
Now, for each x such that Pra[g(x, a) = p(x) · a] ≥ 1/2 + ε/2 we have p(x) ∈ S(x) by

definition. Let ci(x), for i = 1, . . . , 1/ε2 be the i-th element of S(x) (say, in lexicographic
order, and if S(x) has less than i elements let ci(x) be 0). Again, we have that ci(x) is
computable in polynomial in 2k and, by an averaging argument, there must be an i∗ such
that for at least an ε3 fraction of the x we have ci∗(x) = p(x). We then let Cf (x) = ci∗(x),
and apply Theorem 52. 2

At this point, we are ready to state our main result, except that we need some more
notation. Let us define avgSIZEp(n)(t(n)) to be the class of decision problems L such that
for every input length n there is a circit C of size t(n) such that

Prx∈{0,1}n [C(x) = Ln(x)] ≥ p(n)

Corollary 55 Suppose that EXP ⊆ avgSIZE1/2+1/n

(
nO(1)

)
, then EXP ⊆ SIZE(nO(1)).

Suppose that PSPACE ⊆ avgSIZE1/2+1/n

(
nO(1)

)
, then PSPACE ⊆ SIZE(nO(1)).

10.4 References

Polynomial encodings are used by Babai et al. [BFNW93] to prove average-case results
for problems in EXP. The presentation in these notes is influenced by the more general
perspective taken in [STV01]. Sudan’s list-decoding algorithm for the Reed-Solomon code
appears in [Sud97].

66

Exercises

• Let C : {0, 1}n → {0, 1}m be an error-correcting code of minimum relative distance
3/4. Show that n = 1.

• Show that avgBPP1−1/n(n2) contains undecidable languages.

• This may be somewhat complicated: try to get a version of Theorem 52 that is more
explicitely in terms of a list-decoding algorithm. The proof already shows that one
can (withouth non-uniformity) define a list of |F|m+1 decoding algorithms (one for
each choice of y and p(y)) such that one of them is correct.

– Show that (with a small loss in the parameters) y can be chosen at random, so
that we only need to enumerate over the |F| possible values for p(y).

– Can you modify the algorithm so that the list contains only poly(1/ε) elements
instead of |F|?.

67

Lecture 11

The XOR Lemma

We now see an alternative way of proving strong average-case hardness results, assuming
we have as a starting point a function that is already somewhat hard on average. Part of
these notes were written by Sanjeev Arora.

11.1 The XOR Lemma

Definition 15 (δ-hardness) Let f be a boolean function on n-bit inputs, D a distribution
on n bit strings. If δ < 1/2 and g ∈ [n, 2

n

n] then we say that f is δ-hard on distribution D
for circuits of size g if for any boolean circuit C with at most g gates:

Pr
x∈D

[f(x) = C(x)] < 1− δ. (11.1)

We want to transform f into a function f ′ that is very hard on average and that can be
computed efficiently given f .

For a parameter k, consider the function f k : {0, 1}nk → {0, 1} defined as

fk(x1, . . . , xk) = f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk) .

Yao’s “XOR-Lemma” states that the fraction on inputs on which f k can be computed
by an efficient circuit tends to 1/2 for large k. To see why this makes sense, let us first
compute how successful we can be in computing f k if we just try to compute f() on each
input xi and the we xor the results. In each attempt we will be successful with probability at
most δ (let us say exactly δ for simplicity). Then the probability of computing f k correctly
is the same as the probability that we make an even number of errors. This is the same
as defining independent 0/1 random variables Z1, . . . , Zk, where for each i Pr[Zi = 0] = δ
and asking what is Pr[Z1 ⊕ · · · ⊕ Zk = 0]. We can think of each Zi as being sampled in
the following equivalent way: with probability 1 − 2δ we set Zi = 0, and with probability
2δ we flip an unbiased coin and let Zi be equal to the outcome of the coin. Then there is
a probability (1 − 2δ)k that when we sample Z1, . . . , Zk we never flip a coin, we then all
Zi are zero and their xor is also zero; with the remaining 1 − (1 − 2δ)k probability we flip
at least one coin, and the xor of the Zi contains the value of that coin xor-ed with other
independent values, and so it is unbiased. Overall, we have

Pr[Z1 ⊕ · · · ⊕ Zk = 0] = (1− 2δ)k +
1

2
(1− (1− 2δ)k) =

1

2
+

1

2
(1− 2δ)k

68

that actually tends to 1/2 for large k.
What happens when we consider arbitrary circuits for f k? The following result by

Impagliazzo allows us to get a proof of the XOR Lemma that follows quite closely the
outline of the above probabilistic reasoning.

Definition 16 A set H ⊆ {0, 1}n is a ε-hard core set for a boolean function f with respect
to size S if for any boolean circuit C with at most S gates:

Pr
x∈S

[f(x) = C(x)] <
1

2
+ ε (11.2)

Lemma 56 (Impagliazzo) Suppose boolean function f is δ-hard for size S on n-bit strings.
Then for every ε > 0 there is a set S of size ≥ δ2n such that f is ε-hard core on S for
circuits of size Sε2δ2/4.

This is an extremely strong result: from the δ-hardness of f we only know that for every
circuit C there is a subset HC of δ2n inputs such that C fails on HC . Impagliazzo’s result
states that there is a single set H of δ2n inputs such that every circuit C fails on about half
the elements of H. (Notice the different order of quantifiers.)

From Impagliazzo’s result, it is easy to prove the XOR Lemma.

Theorem 57 (Yao’s XOR Lemma) Let f be a boolean function on n-bit inputs that is
δ-hard for circuits of size S. Then the function f⊕k on nk-bit inputs defined as

f⊕k(x1, x2, . . . , xk) = f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk)

is (12 − ε− (1− δ)k)-hard for circuits of size S ′ = Sε2δ2/4.

Proof: The proof is by contradiction. Assume some circuit C of size at most S ′ satisfies
Pr[C(x1, x2, . . . , xk) = f⊕k(x1, x2, . . . , xk)] ≥ 1/2 + ε+ (1− δ)k.

By Impagliazzo’s Lemma, there is an ε-hard core set H of δ2n inputs with respect to
circuits of size S ′. We construct a circuit C ′ of size S′ that predicts f on at least 1/2 + ε
fraction of inputs of H and thus reach a contradiction.

Partition the set of nk-bit strings into S0, S1, S2, . . . , Sk, where St consist of those
(x1, . . . , xk) in which exactly t of the xi’s lie in H. At most (1 − δ)k fraction of inputs
lie in S0, so C must predict f⊕k with probability at least 1/2 + ε on inputs from the other
classes. Averaging shows there is a t ≥ 1 such that C predicts f⊕k with probability at least
1/2 + ε on inputs randomly chosen from St. Using nonuniformity, assume we know such a
t.

Let x be a random input from H; this is the input to C ′. Pick a1, a2, . . . , at−1 randomly
from H and b1, . . . , bk−t−1 randomly from the complement of H. Randomly permute the k
inputs a1, a2, . . . , at−1, x, b1, . . . , bk−t−1 to get an nk-bit string z; note that z is a random
input from St. Apply C on z. With probability at least (1 + ε)/2 we have C(z) = f⊕k(z).

By averaging, there is a way to fix a1, a2, . . . , at−1, b1, . . . , bk−t−1 and their random per-
mutation such that the circuit still outputs f⊕k(z) with probability 1/2 + ε. Using nonuni-
formity again, we hardwire these choices into circuit C. Thus the circuit is left with n input
wires, into which x is being fed. Noting that

f⊕k(z) = f(x)⊕ f(a1)⊕ · · · ⊕ f(at−1)⊕ f(b1)⊕ · · · ⊕ f(bk−t−1),

69

we again use nonuniformity and assume we know b = f(a1)⊕ · · · ⊕ f(at−1)⊕ f(b1)⊕ · · · ⊕
f(bk−t−1). We add a NOT gate at the top of our circuit iff b = 1. This gives a circuit C ′

with S′ gates (remember we do not count NOT gates in circuit complexity) which on input
x produces C(z) ⊕ b as output. Furthermore, for at least 1/2 + ε fraction of x ∈ H, the
circuit outputs f⊕k(z) ⊕ b, which is f(x). Thus C ′ computes f on 1/2 + ε of inputs from
H, a contradiction. 2

11.2 References

Yao’s XOR Lemma was stated in the conference presentation of [Yao82]. Proofs of the
Lemma appeared in [Lev87, Imp95a, GNW95, IW97]. The proof given here is Impagli-
azzo’s [Imp95a].

70

Exercises

1. Prove a version of Impagliazzo’s Lemma for average-case algorithms that are errorless
but may fail.

We say that a circuit C is errorless for a function f : {0, 1}n → {0, 1} if C(x) ∈
{0, 1, fail} for each x, and C(x) = f(x) whenever C(x) 6= fail.

We say that a function f : {0, 1}n → {0, 1} is δ-hard for errorles circuits of size S if
for every errorless circuit C of size ≤ S for f we have Prx[C(x) = fail] ≥ δ.
Prove that if f : {0, 1}n → {0, 1} is δ-hard for errorless circuits of size S, then there
is a subset H ⊆ {0, 1}n, |H| ≥ δ2n such that for every errorless circuit C for f of size
≤ S′ we have Prx∈H [C(x) = fail] ≥ 1− ε, where S ′ = Ω(εS/(log(1/δ))).

2. Prove a “concatenation lemma” instead of a XOR Lemma. Let f : {0, 1}n → {0, 1}
be δ-hard for circuits of size S. Then argue that the function f ′{0, 1}kn → {0, 1}k
defined as f ′(x1, . . . , xk) = (f(x1), · · · , f(xk)) cannot be computed on more than a
ε+ (1− δ)k fraction of inputs by circuits of size ε2δ2S/4.

71

Lecture 12

Levin’s Theory of Average-case
Complexity

Today we introduce Levin’s theory of average-case complexity.
This theory is still in its infancy: in this chapter we will introduce the notion of “dis-

tributional problems,” discuss various formalizations of the notion of “algorithms that are
efficient on average,” introduce a reducibility that preserves efficient average-case solvabil-
ity, and finally prove that there is a problem that is complete for the distributional version
of NP under such reductions. It is still an open question how to apply this theory to the
study of natural distributional problems that are believed to be hard on average.

12.1 Distributional Problems

Definition 17 (Distributional Problem) A distributional problem is a pair 〈L, µ〉, where
L is a decision problem and µ is a distribution over the set {0, 1}∗ of possible inputs.

In other settings where average-case hardness is considered (e.g. in the study of one-way
functions) we normally describe the distribution of inputs as a collection of distributions
µ1, . . . , µn, . . . where µn is a distribution over the set {0, 1}n of inputs of a given input
length.1 There are various reasons why this single-distribution approach is convenient for
the purposes of this chapter. We will discuss it again later, but for now the basic intuition is
that we will discuss reductions where the length of the output is not a function of the length
of the input, so that sampling inputs from a fixed-length distribution and passing them to
a reduction does not produce a fixed-length distribution (unlike the case of cryptographic
reductions).

We will restrict to the study of distributional problems where µ is “polynomial-time
computable.” What do we mean by that? Fo all x ∈ {0, 1}∗, let

µ (x) =
∑

y≤x
Pr [y] . (12.1)

1One can always reduce the approach of distinct distributions to the approach of this chapter by assuming
that µ first picks at random a certain input length n, and then it samples from µn.

72

where ‘≤’ denotes lexicographic ordering. Then µ must be computable in poly (|x|) time.
Clearly this notion is at least as strong as the requirement that Pr [x] be computable in
polynomial time, because

Pr [x] = µ′ (x) = µ (x)− µ (x− 1) , (12.2)

x− 1 being the lexicographic predecessor of x. Indeed one can show that, under reasonable
assumptions, there exist distributions that are efficiently computable in the second sense
but not polynomial-time computable in our sense.

We can define the “uniform distribution” to be

Pr [x] =
1

|x| (|x|+ 1)
2−|x|; (12.3)

that is, first choose an input size at random under some polynomially-decreasing distribu-
tion, then choose an input of that size uniformly at random. It is easy to see that the
uniform distribution is polynomial-time computable.

12.2 DistNP

We define the complexity class

DistNP = {〈L, µ〉 : L ∈ NP, µ polynomial-time computable} . (12.4)

There are at least two good reasons for looking only at polynomial-time computable
distributions.

1. One can show that there exists a distribution µ such that every problem is as hard on
average under µ as it is in the worst case. Therefore, unless we place some computa-
tional restriction on µ, the average-case theory is identical to the worst-case one.

2. Someone, somewhere, had to generate the instances we’re trying to solve. If we
place computational restrictions on ourselves, then it seems reasonable also to place
restrictions on whoever generated the instances.

It should be clear that we need a whole class of distributions to do reductions; that is,
we can’t just parameterize a complexity class by a single distribution. This is because a
problem can have more than one natural distribution; it’s not always obvious what to take
as the ‘uniform distribution.’

12.3 Reductions

Definition 18 (Reduction) We say that a distributional problem 〈L1, µ1〉 reduces to a
distributional problem 〈L2, µ2〉 (in symbols, 〈L1, µ1〉 ≤ 〈L2, µ2〉) if there exists a polynomial-
time computable function f such that:

1. x ∈ L1 iff f (x) ∈ L2.

73

2. There is a ε > 0 such that, for every x, |f(x)| = Ω(|x|ε).

3. For all y ∈ {0, 1}∗,
∑

x:f(x)=y

µ′1 (x) ≤ poly (|y|)µ′2 (y) . (12.5)

The first condition is the standard condition of many-to-one reductions in complexity
theory: it ensures that an algorithm that is always correct for L2 can be converted into an
algorithm that is always correct for L1. The second condition is a technical one, that is
necessary to show that the reduction preserves efficient-on-average algorithms. All known
reductions satisfies this condition naturally.

The third condition is called domination. To motivate this condition, consider that
we want reductions to preserve the existence of algorithms that are efficient on average.
Suppose that we have an algorithm A2 for problem L2 such that, when we pick y according
to distribution µ2, A(y) is efficient on average; if we want to solve L1 under distribution µ1,
then, starting from an input x distributed according to µ1(x), we compute f(x) and then
apply algorithm A2 to f(x). This will certainly be correct, but what about the running
time? Intuitively, it could be the case that A2 is very slow on some inputs, but such inputs
are unlikely to be sampled according to distribution µ2; the domination condition ensures
us that such inputs are also unlikely to be sampled when we sample x according to µ1 and
then consider f(x).

12.4 Polynomial-Time on Average

Given a problem 〈L, µ〉 and an algorithm A that runs in time t (x) on input x, what does
it mean to say that A solves 〈L, µ〉 in polynomial time on average? We will consider some
flawed definitions before settling on the best one and on an alternate one.

A first difficulty comes with the fact that we are dealing with a single distribution on
all possible inputs. The most intuitive choice of saying that A is efficient if

E[t(x)] is small

is problematic because the expectation could be infinite even if A runs in worst-case poly-
nomial time.

One can work around this difficulty by defining A to be polynomial provided that for
some constant c and for every sufficiently large n,

E[t(x)| |x| = n] ≤ nc

However we chose to define distributional problems and reducibility without separating
problems by input size, and we would run into several difficulties in separating them now.
Besides, it seems reasonable that there could be input lengths on which A takes a long
time, but that are generated with very low probability under µ; in such cases A may still
be regarded as efficient, but this is not taken into account in the above definition.

Our next attempt folds the polynomial running time into the single distribution by
defining A to be polynomial on average if there is a polynomial p such that

74

E

[
t(x)

p(|x|)

]

= O(1)

This definition is quite appealing, but is still subject to the fatal of not being robust, in
that: (1) reductions do not preserve this definition of polynomial solvability on average and
(2) the definition is sensitive to trivial representation changes such as replacing a matrix
representation of a graph by an adjacency list.

To see why these problems arise, let µ be the uniform distribution, and let

t (x) = 2n if x =
−→
0 , t (x) = n2 otherwise. (12.6)

The average running time is about n2. But suppose now that n is replaced by 2n
(because of a change in representation, or because of the application of a reduction), then

t (x) = 22n if x =
−→
0 , t (x) = 4 · n2 otherwise. (12.7)

Similarly, if t(x) is replaced by t2(x), the average running time becomes exponential.
We now come to a satisfying definition.

Definition 19 (Polynomial on average) Suppose A is an algorithm for a distributional
problem 〈L, µ〉 that runs in time t(x) on input x. We say that A has polynomial running
time on average is there is a constant c such that

E

[

t(x)1/c

|x|

]

= O(1)

Notice, first, that this definition is satisfied by any algorithm that runs in worst-case
polynomial time. If t(x) = O(|x|c), then t(x)1/c = O(|x|) and the sum converges. More
interestingly, suppose t() is a time bound for which the above definition is satisfied; then an
algorithm whose running time is t′(x) = t(x)2 also satisfies the definition, unlike the case
of the previous definition. In fact we have the following result, whose non-trivial proof we
omit.

Theorem 58 If 〈L1, µ1〉 ≤ 〈L2, µ2〉 and 〈L2, µ2〉 admits an algorithm that is polynomial on
average, then 〈L1, µ1〉 also admits an algorithm that is polynomial on average.

There is an additional interesting property of the definition of polynomial of average:
there is a high probability that the algorithm runs in polynomial time.

Suppose that

E

[

t (x)1/c

|x|

]

= O (1) . (12.8)

and that we wish to compute Pr[t(x) ≥ k · |x|c]. Such a probability is clearly the same as

Pr[t(x)1/c ≥ k1/c|x|]

75

and by Markov’s inequality this is at most O(1/k1/c), which can be made fairly small by
picking k large enough. Since the algorithm runs in time at most knc for a subset of inputs
having probability 1−k−1/c, we see that our definition gives a smooth quantitative tradeoff
for how much time we need to solve an increasing fraction of inputs.

In the setting of one-way functions and in the study of the average-case complexity of the
permanent and of problems in EXP (with applications to pseudorandomness), we normally
interpret “average case hardness” in the following way: that an algorithm of limited running
time will fail to solve the problem on a noticeable fraction of the input. Conversely, we would
interpret average-case tractability as the existence of an algorithm that solves the problem
in polynomial time, except on a negligible fraction of inputs. This leads to the following
formal definition.

Definition 20 (Heuristic polynomial time) We say that an algorithm A is a heuristic
polynomial time algorithm for a distributional problem 〈L, µ〉 if A always runs in polynomial
time and for every polynomial p

∑

x:A(x)6=χL(x)
µ′(x)p(|x|) = O(1)

In other words, a polynomial time algorithm for a distributional problem is a heuristic if the
algorithm fails on a negligible fraction of inputs, that is, a subset of inputs whose probability
mass is bounded even if multiplied by a polynomial in the input length. It might also make
sense to consider a definition in which A is always correct, although it does not necessarily
work in polynomial time, and that A is heuristic polynomial time if there is a polynomial
q such that for every polynomial p,

∑

x∈Sq µ
′(x)p(|x|) = O(1), where Sq is the set of inputs

x such that A(x) takes more than q(|x|) time. Our definition is only more general, because
from an algorithm A as before one can obtain an algorithm A satisfying Definition 20 by
adding a clock that stops the computation after q(|x|) steps.

The definition of heuristic polynomial time is incomparable with the definition of average
polynomial time. For example, an algorithm could take time 2n on a fraction 1/nlogn of the
inputs of length n, and time n2 on the remaining inputs, and thus be a heuristic polynomial
time algorithm with respect to the uniform distribution, while not beign average polynomial
time with respect to the uniform distribution. On the other hand, consider an algorithm
such that for every input length n, and for 1 ≤ k ≤ 2n/2, there is a fraction about 1/k2 of the
inputs of length n on which the algorithm takes time Θ(kn). Then this algorithm satisfies
the definition of average polynomial time under the uniform distribution, but if we impose
a polynomial clock there will be an inverse polynomial fraction of inputs of each length on
which the algorithm fails, and so the definition of heuristic polynomial time cannot be met.

It is easy to see that heuristic polynomial time is preserved under reductions.

Theorem 59 If 〈L1, µ1〉 ≤ 〈L2, µ2〉 and 〈L2, µ2〉 admits a heuristic polynomial time algo-
rithm, then 〈L1, µ1〉 also admits a heuristic polynomial time algorithm.

Proof: Let A2 be the algorithm for 〈L2, µ2〉, let f be the function realizing the reduction,
and let p be the polynomial witnessing the domination property of the reduction. Let c and
ε be such that for every x we have |x| ≤ c|f(x)|1/ε.

76

Then we define the algorithm A1 than on input x outputs A2(f(x)). Clearly this is a
polynomial time algorithm, and whenever A2 is correct on f(x), then A1 is correct on x.
We need to show that for every polynomial q

∑

x:A2(f(x))6=χL2
(f(x))

µ′1(x)q(|x|) = O(1)

and the left-hand side can be rewritten as
∑

y:A2(y)6=χL2
(y)

∑

x:f(x)=y

µ′1(x)q(|x|)

≤
∑

y:A2(y)6=χL2
(y)

∑

x:f(x)=y

µ′1(x)q(c · |y|1/ε))

≤
∑

y:A2(y)6=χL2
(y)

µ′2(y)p(|y|)q′(|y|)

= O(1)

where the last step uses the fact that A2 is a polynomial heuristic for 〈L2, µ2〉 and in the
second-to-last step we introduce the polynomial q′(n) defined as q(c · n1/ε)

2

12.5 Existence of Complete Problems

We now show that there exists a problem (albeit an artificial one) complete for DistNP.
Let the inputs have the form

〈
M,x, 1t, 1l

〉
, where M is an encoding of a Turing machine

and 1t is a sequence of t ones. Then we define the following “universal” problem U .

• Decide whether there exists a string y such that |y| ≤ l and M (x, y) accepts in at
most t steps.

That U is NP-complete follows directly from the definition. Recall the definition of
NP: we say that L ∈ NP if there exists a machine M running in t = poly (|x|) steps such
that x ∈ L iff there exists a y with y = poly (|x|) such that M (x, y) accepts. Thus, to
reduce L to U we need only map x onto R (x) =

〈
M,x, 1t, 1l

〉
where t and l are sufficiently

large bounds.
To give a reduction that satisfies the domination condition is indeed harded. Let 〈L, µ〉 ∈

DistNP. Define a uniform distribution over the
〈
M,x, 1t, 1l

〉
as follows:

µ′
(〈

M,x, 1t, 1l
〉)

=
1

|M | (|M |+ 1) 2|M |
· 1

|x| (|x|+ 1) 2|x|
· 1

(t+ l) (t+ l + 1)
. (12.9)

The trouble is that, because of the domination condition, we can’t map x onto R (x) if
µ′ (x) > poly (|x|) 2−|x|. We work around this problem by compressing x to a shorter string
if µ′ (x) is large. Intuitively, by mapping high-probability strings onto shorter lengths, we
make their high probability less conspicuous. The following lemma shows how to do this.

77

Lemma 60 Suppose µ is a polynomial-time computable distribution over x. Then there
exists a polynomial-time algorithm C such that

1. C is injective: C (x) 6= C (y) iff x 6= y.

2. |C (x)| ≤ 1 + min
{

|x| , log 1
µ′(x)

}

.

Proof: If µ′ (x) ≤ 2−|x| then simply let C (x) = 0x, that is, 0 concatenated with x. If,
on the other hand, µ′ (x) > 2−|x|, then let C (x) = 1z. Here z is the longest common
prefix of µ (x) and µ (x− 1) when both are written out in binary. Since µ is computable
in polynomial time, so is z. C is injective because only two binary strings s1 and s2 can
have the longest common prefix z; a third string s3 sharing z as a prefix must have a longer
prefix with either s1 or s2. Finally, since µ′ (x) ≤ 2−|z|, |C (x)| ≤ 1 + log 1

µ′(x) . 2

Now the reduction is to map x onto R2 (x) =
〈

M,C (x) , 1t, 1l+|x|
〉

. Here M is a

machine that on input z, x, y checks that C (x) = z (i.e., that x is a valid decoding of z)
and that M (x, y) accepts. The running time of M is t. Clearly x ∈ L iff M accepts. To
show that domination holds, let µ2′ (x) = Pr [R2 (x)] . Then, since the map is one-to-one,
we need only show that µ′ (x) ≤ poly (|x|)µ′2 (x). Since t = O (poly (t)),

µ′2 (x) =
1

O
(∣
∣M
∣
∣
2
)

2|M|
· 1

O
(

|C (x)|2
)

2|C(x)|
· 1

O (t+ l + |x|)2

≥ poly (|x|) max
(

2−|x|, µ′ (x)
)

≥ poly (|x|)µ′ (x)

and we are done.
Note that, since we mapped longer inputs to shorter ones, we could not have done this

reduction input-length-wise.

12.6 Polynomial-Time Samplability

Definition 21 (Samplable distributions) We say that a distribution µ is polynomial-
time samplable if there exists a probabilistic algorithm A, taking no input, that outputs x
with probability µ′ (x) and runs in poly (|x|) time.

Any polynomial-time computable distribution is also polynomial-time samplable, pro-
vided that for all x,

µ′ (x) ≥ 2− poly(|x|) or µ′ (x) = 0. (12.10)

For a polynomial-time computable µ satisfying the above property, we can indeed construct
a sampler A that first chooses a real number r uniformly at random from [0, 1], to poly (|x|)
bits of precision, and then uses binary search to find the first x such that µ (x) ≥ r.

On the other hand, under reasonable assumptions, there are efficiently samplable dis-
tributios µ that are not efficiently computable.

78

In addition to DistNP, we can look at the class

〈NP,P-samplable〉 = {〈L, µ〉 : L ∈ NP, µ polynomial-time samplable} . (12.11)

A result due to Impagliazzo and Levin [IL90] states that if 〈L, µ〉 is DistNP-complete,
then 〈L, µ〉 is also complete for the class 〈NP,P-samplable〉.

This means that the completeness result established in the previous section extends to
the class of NP problems with samplable distributions.

12.7 References

Levin’s theory of average-case complexity was introduced in [Lev86]. Ben-David et al. [BDCGL92]
prove several basic results about the theory. Impagliazzo and Levin [IL90] show that the
theory can be generalized to samplable distributions. Impagliazzo [Imp95b] wrote a very
clear survey on the subject. Another good reference is a survey paper by Goldreich [Gol97].

79

Exercises

1. For a parameter c, consider the distribution Dn,cn over instances of 3SAT with n
variables generated by picking cn times independently a random a clause out of the
8
(
n
3

)
possible clauses that can be constructed from n variables. (Note that the same

clause could be picked more than once.) Let Dc be the distribution obtained by first
picking a number n with probability 1/n(n+ 1) and then sampling from Dn,cn.

(a) Show that an instance from Dn,cn is satisfiable with probability at least (7/8)cn

and at most 2n · (7/8)cn.

(b) Argue that, using the definition given in this lecture, D15 cannot be reduced to
D30.

[Hint: take a sufficiently large n, and then look at the probability of satisfiable
instances of length n under D15 and the probability that their image is generated
by D30.]

80

Lecture 13

Interactive Proofs

In this lecture we will look at the notion of Interactive Proofs and the induced class IP.
Intuitively, this class is obtained by adding the ingredients Interaction and Randomness to
the class NP. As we shall see, adding either one does not make much difference but the
two put together make IPa very powerful class.

13.1 Interactive Proofs

We begin be recalling the definition of NP. Given a language L, we say that: L ∈ NP iff
there is an algorithm V (·, ·) running in polynomial time T (·) and a polynomial p(·) such
that

x ∈ L⇔ ∃y, |y| ≤ p(|x|) and V (x, y) accepts

We can rewrite the above as two separate conditions, using elementary ideas from logic.

x ∈ L⇒ ∃y, |y| ≤ p(|x|) and V (x, y) accepts (Completeness)

x 6∈ L⇒ ∀y, |y| ≤ p(|x|) and V (x, y) rejects (Soundness)

We may generalise this to the figure below 13.1 where the process of recognizing if x ∈ L
is carried out by a Verifier V that must run in polynomial time, and a Prover P, who has
unbounded time and space. The task of the prover is to convince the verifier that x ∈ L
and the verifier is a skeptic who’s task is to be convinced if and only if the string actually
belongs in the language.

Now the class NP is the set of languages L such that L ∈ NP iff there is a Prover P
and a polynomial time verifier V such that:

x ∈ L⇒ P has a strategy to convince V (Completeness)

x 6∈ L⇒ P has no strategy to convince V (Soundness)

By strategy we mean in this case the certificate or proof that is polynomially small,
(corresponding to y in the figure 13.1) that P supplies to V , while later we will generalise
it to interaction i.e. where a sequence of messages is exchanged between the two and a
strategy for P is a function from the sequence of messages seen to the next message that P
must send to V .

81

PROVER VERIFIER

x

y

x

Figure 13.1: NPwith a Prover-Verifier mechanism

Thus, we generalise the above definition to get the class IP. The class IPdiffers in the
following two ways:

1. There is randomness, the verifier may be a randomized machine.

2. There is interaction: unlike the above where a single static proof is sent across, there
are rounds of communication, where the verifier may “ask” further questions of the
prover based on the messages that have been sent to it.

First, we shall see that both of the above are required.

13.1.1 NP+ Interaction = NP

Let the class NP be the class corresponding to NP + interaction. That is we allow the
verifier to ask questions and thus the strategy is a function from sequences of messages (the
past communication) to messages (the next message that the verifier must send). We say
that the class NP is the set of languages L such that L ∈ NP iff there is a Prover P and a
polynomial time verifier V such that:

x ∈ L⇒ P has a strategy to convince V

x 6∈ L⇒ P has no strategy to convince V

It is easy to check that NP = NP. We only need to show NP ⊆ NP, as the other
inclusion is obvious. Say L ∈ NP, let P, V be the prover and verifier for L. Define
P ′, V ′ the one-round prover and verifier as follows: P ′ sends to V ′ the entire transcript of
the interaction between P, V as the certificate. Suppose that interaction was the set of
messages y1, . . . , yn as in the figure 13.2 below. V ′ is essentially like V only it has been
given all the answers to its questions at once. Thus it takes the first message of P , y1, its
response (behaving as V) is exactly y2, but y3 is the reply to that, and so on, it “asks”
the questions and is supplied all the answers on the same transcript, and it accepts iff after
this exchange V accepted. Thus the language accepted by P ′, V ′ is the same as L and so
L ∈ NP. Note that the entire set of messages is polynomially long as there are polynomially
many messages and each is polynomially long.

Note that for the above to work, the prover must at the very beginning know what
responses V may make, which is possible only if V is deterministic. If V was randomized
then to cover all possible questions in a polynomially long interaction P ′ would have to send
an exponentially large transcript.

82

y1
y2
y3

yn

VP y1

y3
y2

yn

P’ V’

Figure 13.2: Simulating several rounds of interaction in one round

13.1.2 NP + Randomness

By adding randomness to the class NP we get the class MA.

Definition 22 (MA) L ∈MA iff there exists a probabilistic polynomial time machine V
such that:

x ∈ L⇒ ∃y.Pr[V (x, y) accepts] ≥ 2

3

x ∈ L⇒ ∀y.Pr[V (x, y) accepts] ≤ 1

3

As in similar classes, the success probabilities may be boosted arbitrarily high. It is
conjectured that MA = NP. it is known that if coNP ⊆ MA then the polynomial
heirarchy collapses.

We are now in a position to define formally the class IP.

13.2 IP

Definition 23 (IP) A language L is in IP(r(·)) iff there exists a probabilistic polynomial
time verifier V such that:

x ∈ L⇒ ∃P.Pr[V interacting with P accepts] ≥ 2

3

x ∈ L⇒ ∀P.Pr[V interacting with P accepts] ≤ 1

3

Where V also uses at most r(|x|) rounds of interaction.

Note that by round we really mean a single “message” and not a question-answer se-
quence. That is, by two rounds we mean that the Verifier asks a question of the Prover and
the Prover replies, which is exactly two messages.

A related class is AM which is defined as follows:

Definition 24 (AM) A language L is in AM(r(·)) iff L ∈ IP(r(·)) and at each round
the verifier sends a random message, that is a message that is completely random and
independent of all previous communication.

83

The above is also known as Public Coin Proof Systems.
There are the following surprising theorems about the classes AM and IP.

Theorem 61 IP(r(n)) ⊆ AM(r(n) + 2)

Theorem 62 ∀r(n) ≥ 2, AM(2r(n)) ⊆ AM(r(n)).

This yields the following corollaries:

Corollary 63 AM(O(1)) ⊆ AM(2)

That is, all constant round AM proofs can be done in just two rounds. And also:

Corollary 64 IP(O(1))=AM(O(1))=AM(2)

Finally we have the famous theorem of Shamir:

Theorem 65 IP(poly(n)) = PSPACE

We know thatAM(2) is good enough for systems with a constant number of rounds, but
it would be surprising indeed if polynomially many rounds could be simulated in a constant
number of round. Due to the above result, when people say AMthey mean AM(2), but
when people say IP they mean IP(poly).

There is also the following theorem that gives an upper bound on IP with constant
rounds.

Theorem 66 If coNP ⊆ IP(O(1)) then the polynomial heirarchy collapses.

Thus for a long time it was believed that IPcould not capture coNPas it was thought that
IPwith a constant number of rounds was roughly as good as IPwith polynomially many
rounds. However, it was shown that in fact coNPwas contained in IP(poly(n)), the proof
of which we shall shortly see and a few weeks after that result, Shamir proved that in fact
IP was the same as PSPACE.

13.3 An Example: Graph Non-Isomorphism

To get a feel of the power of interaction and randomness let us look at an example, Graph

Non-Isomorphism. The problem is the following:

• Input: Graphs G1 = (V1, E1), G2 = (V2, E2)

• Output: Decide whether there exists NO π : V1 7→ V2 such that (u, v) ∈ E1 iff
(π(u), π(v)) ∈ E2.

This problem is not known to be in NP. The difficulty lies in constructing a succint
proof that no permutation of the vertices is good, given that there are exponentially many
permutations, let us see how this is in AM(2).

Suppose that the skeptic Arthur (the verifier) has the two graphs G1, G2 and wishes to
know whether or not all the permutations are bad. His only resources are randomness and
his wizard Merlin who is all knowing (the prover).

He does the following:

84

1. Picks a random b ∈ {1, 2}.

2. Creates G to be a random permutation of Gb.

3. Sends G to Merlin and demands to know of Merlin which graph he sent him a per-
mutation of.

4. If Merlin was correct Arthur believes that the graphs are non-isomorphic (accepts),
otherwise Merlin was incorrect, Arthur believes the graphs are isomorphic (rejects).

Notice that if the graphs are really non-isomorphic, then Merlin will always be able
to tell which graph was sent to him as only one of the graphs will be isomorphic to the
random permutation that Merlin is given, and with his infinite resources Merlin will figure
out which one and thus will reply correctly and so Arthur will accept with probability 1.

If the graphs are isomorphic then Merlin cannot tell as the permutation is a permutation
of both G1, G2. Merlin’s output depends only on G1, G2, G, say it is i. Now i = b with
probability 1

2 as b is picked independantly at the start. Thus in the case the graphs are
isomorphic, Arthur accepts only with probability 1

2 . By repeating this k times we can shrink
this to 2−k.

Thus we have a protocol, a prover and a verifier for Graph Non-Isomorphism and so
it is in AM(2).
Note: The verifier of the above has learnt nothing at all about the Graphs that he did

not know before. He does not have a proof or certificate with which he may convince a third
party that the Graphs are non-isomorphic. The entire power was in the interaction between
it and the prover, and the one bit that the prover gave it gives it significant confidence but
no knowledge. This was therefore a Zero Knowledge Proof.

Remark 1 Graph Non-Isomorphism ∈ IP(2) = AM(2). Thus, Graph Isomorphism

is not NP-complete unless the polynomial heirarchy collapses. Thus is because, if Graph

Isomorphism is NP-complete then Graph Non-Isomorphism is coNP-complete, and
from the above result, coNP ⊆ AM(2) and from the theorem 66, the polynomial heirarchy
would collapse.

13.4 Random Self-Reductions

It is not known how to prove worst-case to average-case equivalence for NP-complete prob-
lems. In this section we show that an approach similar to the one taken for #P, PSPACE
and EXP does not work.

The worst-case to average-case equivalence results that we have seen so far rely on
procedures to compute polynomials exactly given a procedure that computes the polynomial
well on average. In all cases, given a point x on which we want to evaluate the polynomial,
we pick a random line passing through x and then evaluate the good-on-average procedure
on points along the line. Since each such point is uniformly distributed, we are able to get
the correct value of the polynomial on all points (in the simplest case) or on a majority
of points (in the procedures based on Berlekamp-Welch). The following definition captures
the way such reductions work.

85

Definition 25 (Random Self Reduction) We say that a problem L has a non-adaptive
random self reduction if there is a probabilistic polynomial time algorithm R such that,
given an input x ∈ {0, 1}n, R(x) produces a sequence of inputs y1, . . . , yk ∈ {0, 1}n

′
, where

k, n′ = nO(1), and then given L(y1), . . . , L(yk), R decides correctly whether x ∈ L with
high probability. Furthermore, for every x ∈ {0, 1}n and every i, the string yi is uniformly
distributed in {0, 1}n′

The intuition for the use of a random self-reduction is that if we have an algorithm A
that solves L on, say, a fraction 1 − 1/4k of the elements of {0, 1}n′ , then we can run R,
generate y1, . . . , yk, and then continue using the answers A(y1), . . . , A(yk), which are going
to be all correct with probability at least 3/4. So A can be used to solve L everywhere on
inputs of length n.

We note that the above definition is restrictive in two ways: R generates the points
y1, . . . , yk non-adaptively, that is, it chooses y2 before knowing L(y1), and so on. Secondly,
it is not really necessary that all points y1, . . . , yk be uniformly distributed. Suppose that
each point yi is just generated according to a “smooth” distribution (that is, say, no element
of {0, 1}n′ is generated with probability larger than c/2n

′
), and that we have an algorithm

A that succeeds on at least a fraction 1 − 1/4ck of {0, 1}n′ . Then using the randomized
reduction together with A we still have at least a probability 3/4 that all queries are correctly
answered.

Nothing is known about the existence of adaptive and/or smooth random self-reduction,
but the following theorem rules out non-adaptive uniform random self-reduction.

Theorem 67 Suppose an NP-complete language L has a random self-reduction as in Def-
inition 25. Then the polynomial hierarchy collapses to Σ3.

Proof: We show that if L ∈ NP and L has a random self-reduction, then the complement
of L has an AM [2] protocol (that uses some non-uniformity), and if L were NP-complete
this would imply the collapse of the hierarchy.

Let R be the random self-reduction for L, let us define a protocol for the complement of
L on inputs of length n; let n′ be the length of the queries generated by R(x), k the number
of queries, and let

p = Pry∈{0,1}n′ [y ∈ L]

The value p will be the non-uniformity used in the protocol.
We fix a parameter m = Θ((k log k)2). Given x ∈ {0, 1}n:

• The verifier runs R(x) m times indepedently, with fresh randomness each time, and
generates queries (y11, . . . , y

1
k), . . . , (ym1 , . . . , y

m
k). The verifier sends all such queries to

the prover.1

• The prover responds by telling whether each yij is in L or not, and by certifying all
the YES answers with an NP witness (remember that L is in NP).

• The verifier accepts if and only if the following conditions hold:

1To make it an AM protocol, the verifier may just send the randomness it used to generate the m runs
of R(x), and let the prover figure out the corresponding queries yij .

86

1. R(x) rejects in all the m iterations, assuming the answers from the prover were
correct,

2. all certificates sent by the prover are valid, and

3. for every j = 1, . . . k at least pm−m/2k of the queries y1j , . . . , y
m
j are answered

YES

We need to argue that if x 6∈ L then the verifier accepts with high probability when inter-
acting with a valid prover, and that if x ∈ L then the verifier accepts with low probability
when interacting with an arbitrary cheating prover.

If x 6∈ L and the prover follows the protocol, then R(x) rejects in all the m iterations,
and the verifier accepts, provided that the third condition is satisfied. Note that for each
fixed j, the strings y1j , . . . y

m
j are independent and uniformly distributed elements of {0, 1}n′ ,

and each one has probability p of being a YES instance. Overall, using Chernoff bounds,
there is probability at least 1/4k that at least pm−O(

√
m log k) of them are YES instances,

and this number is larger is pm −m/2k if m ≥ c(k log k)2 for a sufficiently large c. Then
there is a probability at least 3/4 that the condition is true for all j.

If x ∈ L, then the verifier rejects if the prover sends valid answers for one of the m
runs of R(x), so, if the verifier accepts, it must be because the prover sent a set of answers
containing at least m errors. All the erroneous answers of the prover must be YES instances
for which it answers NO (if the prover tries to cheat in the other way, it would be caught
because of its inability to provide a valid certificate). This means that there is some j such
that, among the queries y1j , . . . y

m
j , at least m/k are answered NO even though they were

YES instances. By the calculation in the above paragraph, very likely there were no more
than pm+O(

√
m log k) yes instances to start with among y1j , . . . y

m
j , and so the prover has

to pretend that there are only pm+O(
√
m log k)− k/m, which is less than pm− k/2m by

our choice of m, and so the verifier, with high probability, rejects when checking condition
(3). 2

13.5 References

The classes IP and AM were defined independently. The class IP was defined by Shafi
Goldwasser, Silvio Micali and Charles Rackoff [GMR89]. They proposed the class IP as an
intermediate step towards the definition of Zero Knowledge Proofs. The paper [GMR89]
was written in 1983 but appeared first in FOCS 85. The class AM was defined by Lazlo
Babai [Bab85] (the journal version of the paper is by Babai and Moran [BM88]), in order
to characterize the complexity of a group-theoretic problem. The paper also appeared in
FOCS 85, and contained theorem 62. The interactive proof for graph non-isomorphism is
from [GMW91]. Theorem 61 is due to Goldreich and Sipser [GS86]. Credit for the proof
that IP = PSPACE is typically shared between the work of Lund et al. [LFKN92] and of
Shamir [Sha92].

The results of Section 13.4 are due to Feigenbaum and Fortnow [FF93].

87

Exercises

The following exercises give a proof of Theorem 66.

1. A non-deterministic circuit C has two inputs x = x1, . . . , lm and y = y1, . . . , yn. C
accepts the string x iff ∃y.C(x, y) = 1. Show that every problem in MA has non-
deterministic circuits of polynomial size. Sligthly harder: show that every problem in
AM[2] has non-deterministic circuits of polynomial size.

[Hint: The proof is similar to the proof that BPP has polynomial sized circuits.]

2. Prove that if coNP has polynomial-size non-deterministic circuits, then the polyno-
mial hierarchy collapses.

[Hint: This is not too different from Karp-Lipton.]

88

Lecture 14

IP=PSPACE

In this lecture we will see that IP = PSPACE. We start by giving an interactive proof
system for UNSAT, and therefore show that coNP ⊆ IP. In fact, as we will see, the same
proof system with minor modifications can be used for #SAT. Since #SAT is #P-complete,

and since PH ⊆ P#P, then PH ⊆ IP. Finally, we generalize this protocol in order to
solve QSAT, and thus show that PSPACE ⊆ IP.

14.1 UNSAT ⊆ IP
Let φ be a formula with m clauses over the variables x1, . . . , xn. Let N > 2n ·3m be a prime
number. We translate φ to a polynomial p over the field (mod N) in the following way.
Literals are translated as follows: xi → xi, xi → (1− xi). A clause is translated to the sum
of the (at most 3) expressions corresponding to the literals of the clause. Finally, p is taken
as the product of the m expressions corresponding to the m clauses. Notice that each literal
is of degree 1, and therefore p is of degree at most m. Furthermore, for a 0-1 assignment,
p evaluates to 0 if this assignment does not satisfy φ, and to a non-zero number if this
assignment does satisfy φ where this number can be at most 3m. Hence, φ is unsatisfiable
iff ∑

x1∈{0,1}

∑

x2∈{0,1}
. . .

∑

xn∈{0,1}
p(x1, . . . , xn) ≡ 0 (mod N)

Also, the translation to p can be done in polynomial time, and if we take N = 2O(n+m) then
elements in the field can be represented by O(n+m) bits, and thus one evaluation of p in
any point in {0, . . . , N − 1}m can be computed in polynomial time.

We now describe a protocol that enables the prover to convince the verifier that φ
is unsatisfiable (see also Figure 14.1 for a sketch of the protocol). At the first round,
the prover sends N , a proof that it is prime, and an m-degree univariate polynomial
q1(x) =

∑

x2,...,xn∈{0,1} p(x, x2, . . . , xn). At this point, the verifier verifies the primality
proof as well as checking that q1(0) + q1(1) = 0. If any of the checks fail then the veri-
fier rejects. Otherwise, it continues by choosing a random r1 ∈ {0, . . . , N − 1} and send-
ing it to the prover. The prover responds by sending an m-degree univariate polynomial
q2(x) =

∑

x3,...,xn∈{0,1} p(r1, x, x3, . . . , xn). Now, the verifier checks if q2(0) + q2(1) = q1(r1).
If not, it rejects, and otherwise it continues by choosing a random r2 ∈ {0, . . . , N − 1} and

89

φ

?

P

φ

?

V

N , a proof that N is prime
- check primality proof

q1(x) =
∑

x2,...,xn∈{0,1} p(x, x2, . . . , xn)
- check q1(0) + q1(1) = 0

r1
¾ pick random r1 ∈ {0, . . . , N − 1}

q2(x) =
∑

x3,...,xn∈{0,1} p(r1, x, x3, . . . , xn)
- check q2(0) + q2(1) = q1(r1)

r2
¾ pick random r2 ∈ {0, . . . , N − 1}

q

q

q

qi(x) =
∑

xi+1,...,xn∈{0,1} p(r1, . . . , ri−1, x, xi+1, . . . , xn)
- check qi(0) + qi(1) = qi−1(ri−1)

ri
¾ pick random ri ∈ {0, . . . , N − 1}

q

q

q

qn(x) = p(r1, . . . , rn−1, x)
- check qn(0) + qn(1) = qn−1(rn−1)

pick random rn ∈ {0, . . . , N − 1}

check qn(rn) = p(r1, . . . , rn)

Figure 14.1: The protocol for proving unsatisfiability

90

sending it to the prover. The protocol continues in this way where the ith message that
the prover sends is a polynomial qi(x) =

∑

xi+1,...,xn∈{0,1} p(r1, . . . , ri−1, x, xi+1, . . . , xn).
The verifier responds by checking that qi(0) + qi(1) = qi−1(ri−1), rejecting if it is not,
and otherwise, choosing a random ri ∈ {0, . . . , N − 1} and sending it to the prover. At
the last round, the prover sends qn(x) = p(r1, . . . , rn−1, x). The verifier checks that
qn(0) + qn(1) = qn−1(rn−1), chooses a random rn ∈ {0, . . . , N − 1}, and checks that
qn(rn) = p(r1, . . . , rn). The verifier rejects if either of the checks fail, and accepts oth-
erwise. The verifier can indeed perform the last check since as mentioned before, it can
translate φ to p and evaluate it at the point (r1, . . . , rn) in polynomial time. Also, the mes-
sages are of polynomial length because elements of the field can be written with O(m+ n)
bits, and since each polynomial has m coefficients.

We now show the correctness of this proof system. If φ is unsatisfiable then the prover
can make the verifier accept w.p. 1 by just following the protocol since q1(0) + q1(1) =
∑

x1,...,xn∈{0,1} p(x1, . . . , xn) ≡ 0 (mod N). It is clear that the rest of the checks will succeed
if the prover send the qi’s accordingly. We have to show that if φ is satisfiable then no matter
what polynomials the prover sends, the verifier will reject with high probability. We write
pi(x) for the polynomial that a prover who follows the protocol sends in round i. Since φ
is satisfiable then

∑

x1,...,xn∈{0,1} p(x1, . . . , xn) 6≡ 0 (mod N). Therefore, p1(0) + p1(1) 6= 0,
and hence, if the prover sends q1 = p1 then the verifier will reject. If the prover sends q1 6= p1
then since both are degree-m polynomials then they agree on at most m places. Thus, there
is probability ≥ 1 − m

N that p1(r1) 6= q1(r1). Suppose that indeed p1(r1) 6= q1(r1). If the
prover then sends q2 = p2 then the verifier will reject because q2(0)+q2(1) = p1(r1) 6= q1(r1).
Thus, the prover must send q2 6= p2. Again, in that case, q2 and p2 will differ on a fraction
≥ 1 − m

N of the elements of {0, . . . , N − 1}, so p2(r2) 6= q2(r2) with probability ≥ 1 − m
N .

We continue the argument in a similar way. If qi 6= pi then w.p. ≥ 1 − m
N , ri is such

that pi(ri) 6= qi(ri). If so, then the prover must send qi+1 6= pi+1 in order for the verifier
not to reject. At the end, if the verifier has not rejected before the last check, then w.p.
≥ 1 − (n − 1)mN , qn 6= pn. If so, then w.p. ≥ 1 − m

N the verifier will reject since, again,
qn(x) and p(r1, . . . , rn−1, x) differ on at least that fraction of the points. Thus, the total
probability that the verifier will accept is at most nm

N .

14.2 A Proof System for #SAT

We now show that with a few minor modifications, the previous proof system can be used
to prove that a formula has a given number of satisfying assignments. Suppose φ has k
satisfying assignments. We wish to give a protocol s.t. if the prover gives k as an answer,
he is able to continue with the protocol s.t. the verifier will accept w.p. 1, but if it gives
another number as an answer, then no matter what messages the prover sends afterwards,
the verifier will reject with high probability.

We first change the way we translate φ to the polynomial p. The change is only in
the way we translate clauses. Instead of translating a clause to the sum of the literals, we
translate the clause (z1∨z2∨z3) to 1−(1−z1)(1−z2)(1−z3). Notice that if a 0-1 assignment
to the variables satisfies the clause, then the value of this expression will be 1, and if the
assignment does not satisfy the clause, this value will be 0. Hence, 0-1 assignments that
satisfy φ will be evaluated to 1 by p, while as before, the 0-1 assignments that do not satisfy

91

φ will be evaluated to 0. Notice that now the degree of p is 3m instead of m, but now the
sum over all evaluations of 0-1 assignments is equal to the number of satisfying assignments
of φ. For the same reason, it is now enough to take N > 2n.

In the current protocol, the prover starts by sending k, and then continues as in the
previous protocol (with the updated definition of p). After receiving the first message, the
verifier checks if q1(0) + q1(1) = k instead of checking q1(0) + q1(1) = 0, and follows the
rest of the previous protocol. If k is indeed the correct number of satisfying assignments,
then the prover can continue by sending qi = pi at each round, and the verifier will accept
with probability 1. If k is not the correct number of satisfying assignments, then according
to the same analysis as in the previous section, the verifier will accept with probability at
most 3mn

N .

14.3 A Proof System for QBF

14.3.1 PSPACE-Complete Language: TQBF

For a 3-CNF boolean formula φ(x1, x2, . . . , xn), we may think of its satisfiability problem
as determining the truth value of the statement

∃x1∃x2, . . . , ∃xn φ(x1, x2, . . . , xn).

We can generalize this idea to allow universal quantifiers in additional to existential quan-
tifiers to get formulas denoted as quantified boolean formulas. For example, ∀x1∃x2 (x1 ∨
x2)∧ (x1∨x2) is a quantified boolean formula. In fact, it’s easy to see that it’s a true quan-
tified boolean formula. Now consider the language of all true quantified boolean formulas:

TQBF = {Φ : Φ is a true quantified boolean formula}.

It is known that TQBF is PSPACE-complete. Thus, if we have an interactive-proof
protocol for recognizing TQBF, then we have a protocol for recognizing any language in
PSPACE. In the rest of the lecture, we will provide a protocol for recognizing TQBF.

14.3.2 Arithmetization of TQBF

We will consider the following quantified boolean formula:

Φ = ∀x1∃x2∀x3 . . .∀xn φ(x1, x2, . . . , xn),

where φ(x1, x2, . . . , xn) is a 3− CNF boolean formula. Without loss of generality, we can
assume that all the quantified boolean formulas given to us have this form. The main idea
in the interactive protocol for recognizing TQBFis the same as proving]P ⊆ IP from the
last lecture: we will first arithmetize the quantified boolean formula and then the prover
will convince the verifier that the arithmetized expression evaluates to 1. In the following,
all the random elements are drawn from a field {0, 1, . . . , p−1}, where p is sufficiently large.

92

Naive Solution

So how do we arithmetize the quantified formula? we will first show a naive solution and
point out its problems. To begin with, we know from the last lecture how to arithmetize
φ(x1, x2, . . . , xn) to obtain the polynomial F (x1, x2, . . . , xn). Recall that F has degree 3m in
each variable (m is the number of clauses in φ) and agrees with φ for all 0−1 assignments to
the n variables. Now we read the quantifiers from right to left and consider the expression
∀xnφ(x1, x2, . . . , xn). This expression has n− 1 free variables, and for each substitution of
values to these variables the expression itself either evaluates to true or false. We’re looking
for a polynomial that has the same behavior. Using F we can now write a new polynomial
P∀xnF (x1, x2, . . . , xn), which is equal to

F (x1, x2, . . . , xn−1, 0) · F (x1, x2, . . . , xn−1, 1).

Next consider the previous quantifier ∃xn−1. We want to find a polynomial representation
for ∃xn−1∀xnφ(x1, x2, . . . , xn), given the polynomial representation G(x1, x2, . . . , xn−1) for
∀xnφ(x1, x2, . . . , xn). The following polynomial, which we denote by P∃xn−1G(x1, x2, . . . , xn−1),
satisfies the condition:

1− (1−G(x1, x2, . . . , xn−2, 0)) · (1−G(x1, x2, . . . , xn−2, 1)).

In the notations introduced above, the polynomial for ∃xn−1∀xnφ(x1, x2, . . . , xn) is

P∃xn−1P∀xnF (x1, x2, . . . , xn).

In general, we transform the quantified boolean formula Φ into an arithmetic expression
using operators P∀u and P∃v as follows:

• Turn the 3-CNF formula φ(x1, x2, . . . , xn) into the polynomial F (x1, x2, . . . , xn) as
done in the last lecture.

• Replace the quantifier ∃xi by the operator P∃xi .

• Replace the quantifier ∀xi by the operator P∀xi .

The final expression after the transformation always evaluates to 0 or 1. It evaluates to 1
if and only if the quantified boolean formula Φ is true.

We have thus arrived at a way of representing quantified boolean formulas using arith-
metic operations. Now consider the arithmetic expression after the transformation

P∀x1P∃x2 . . . P∀xnF (x1, x2, . . . , xn)

and it evaluates to either 0 or 1. Let us apply the idea from the last lecture to derive a
protocol and see what happens. In the first step, the prover eliminates the first operator
P∀x1 and sends the verifier the polynomial G1(x1) corresponding to the rest of the arithmetic
expression:

G1(x1) = P∃x2P∀x3 . . . P∀xnF (x1, x2, . . . , xn).

93

Upon receiving the polynomial Ĝ1(x1) (which the prover claims to be G1(x1)), the verifier
checks that Ĝ1(0) · Ĝ1(1) = 1. The verifier then picks a random value r1, computes β1 =
Ĝ1(r1) and sends r1 to the prover. The prover then needs to convince the verifier that

β1 = P∃x2P∀x3 . . . P∀xnF (r1, x2, . . . , xn).

The prover then proceeds by eliminating the operator one after another, and in the end the
verifier checks that βn = F (r1, r2, . . . , rn).

However, since each operator potentially doubles the degree of each variable in the
expression, the degree of the polynomial G1(x1) in the end can very well be exponential.
This means that the prover will have to send the verifier exponentially many coefficients,
but the polynomially bounded verifier will not be able to read them all.

Revised Solution

We will ensure that the degree of any variable in any intermediate stage of the transforma-
tion never goes above two. The arithmetization given above clearly does not satisfy this
property. Yet there is a simple way to fix this. At any stage of the transformation, we have
a polynomial J(x1, x2, . . . , xn) where some variables’ degree might exceed two. Normally,
we can’t expect to transform J into a new polynomial J ′(x1, x2, . . . , xn) where the degree
of any variable is at most two while still evaluating to the same value at all points. Yet,
notice here that we only need J ′ to agree with J on all 0 − 1 assignments. What J ′ does
at any other point is of no interests to us. The key observation then is that for x = 0
or x = 1, xk = x for all positive integers k. The desired polynomial J ′ can thus be ob-
tained from J by erasing all exponents, that is, replacing them with 1. For example, if
J(x1, x2, x3) = x31x

4
2 + 5x1x

3
2 + x62x

2
3, the transformed polynomial J ′ is 6x1x2 + x2x3. In

general, we define a new operator, Rxi , which when applied to a polynomial reduces the
exponents of xi to 1 at all occurrences. More formally, we have

RxiJ (x1 , . . . , xn) = xi · J(x1, . . . , xi−1, 1, xi+1, . . . , xn)+

(1− xi) · J(x1, . . . , xi−1, 0, xi+1, . . . , xn).

In this notation, we have

J ′(x1, . . . , xn) = Rx1Rx2 . . .RxnJ (x1 , . . . , xn).

In the revised arithmetization process, the only change we make is to apply the reduce
operators whenever the degree of any variable can potentially be above 1 in the polynomial
obtained from the previous step. In particular, we apply the reduce operators after the 3-
CNF formula φ is arithmetized into the polynomial F (x1, . . . , xn). Also, since the other two
operators, P∀u and P∀v, might double the degree of some variables in the transformation,
we apply the reduce operators after each application of P∀u or P∃v. This revision will ensure
that the degree of any variable at any intermediate stage never goes above 2. The degree
of some variable might reach 2 after a P∀u or P∃v operator, but will be reduced back to 1
after the reduce operators are applied.

94

14.3.3 The Interactive Protocol

Using the revised arithmetization, we arithmetize the quantified boolean formula of the
form

Φ = ∀x1∃x2∀x3 . . . ∀xnφ(x1, . . . , xn)

into

E = P∀x1Rx1P∃x2Rx1Rx2P∀x3Rx1Rx2Rx3P∃x4 . . .P∀xnRx1 . . .RxnF (x1 , . . . , xn).

Now the idea of the interactive protocol from the last lecture can be put to use without any
trouble. The prover and the verifier communicate to eliminate one operator at each stage.
In the end, no operators are left and the verifier checks the required condition.

Initially, the prover eliminates the first operator P∀x1 and sends the verifier the polyno-
mial G1(x1) corresponding to the rest of the arithmetic expression:

G1(x1) = Rx1P∃x2 . . .RxnF (x1 , . . . , xn).

Notice that this is a polynomial of degree 1 instead of exponential degree in the original
naive arithmetization. Upon receiving the polynomial Ĝ1(x1)(which the prover claims to
be G1(x1)), the verifier checks that P∀x1Ĝ1(x1) = Ĝ1(0) · Ĝ1(1) = 1. The verifier then picks
a random value r1, computes β1 = Ĝ1(r1) and sends r1 to the prover. (In this stage, the
verifier actually doesn’t have to send r1 to the prover, but for consistency with later rounds
we let the verifier send r1 to the prover. The soundness of the protocol remains.) The
prover then needs to convince the verifier that

β1 = Rx1P∃x2 . . .RxnF (r1 , x2 , . . . , xn).

The prover then eliminates the second operator Rx1 and sends the verifier the polynomial
G2(x1) corresponding to the rest of the arithmetic expression:

G2(x1) = P∃x2 . . .RxnF (x1 , . . . , xn).

Notice that this is a polynomial of degree at most 2. Upon receiving the polynomial
Ĝ2(x1)(which the prover claims to be G2(x1)), the verifier checks that (Rx1 Ĝ2 (x1))[r1] =
Ĝ1 (r1), where [r1] means that the polynomial in the parenthesis with free variable x1 is eval-
uated at point r1. The verifier then picks a random value r2 for x1, computes β2 = Ĝ1(r2)
and sends r2 to the prover.

In general, when the verifier needs to be convinced that

β = (RxiP(α1 , α2 , . . . , αi−1 , xi))[αi],

he asks for the polynomial G(xi) = P (α1, α2, . . . , αi−1, xi), and gets Ĝ(xi). (αj(1 ≤ j ≤ i)
is the most recent random value the verifier assigned to variable xj .) He verifies that
(Rxi Ĝ(xi))[αi] = β and computes β′ = Ĝ(α′i) by choosing a new random value α′i for xi.
Now the verification is reduced to whether

β′ = P (α1, α2, . . . , αi−1, α
′
i).

95

The case of the P∀u or P∃v operator is the same as in the last lecture where we proved
]P ⊆ IP.

The prover proceeds by eliminating the operators one after another, and in the end the
verifier checks that q(αn) = F (α1, . . . , αn), where q is the polynomial the prover sends to
the verifier in the last round and αi is the most recent random value the verifier assigned
to variable xi.

14.3.4 Analysis

Theorem 68 (a) If Φ ∈ TQBF, then there exists a prover such that Pr[V erifier accepts] =
1.
(b) If Φ 6∈ TQBF, then for all provers Pr[V erifier accepts] ≤ 1/2.

Proof: Part (a) is obvious. For part (b), the analysis is the same as in the case of]P ⊆ IP
from the last lecture. The error can be introduced only when the verifier happens to pick
a root of some low degree polynomial at some round. While dealing with the last n reduce
operators, the polynomials may have degree at most 3m. For the remaining n(n − 1)/2
reduce operators, the degree is at most 2. For every other operator (n operators of the
form P∀u or P∃v) the degree of the polynomial is 1. Thus, the sum of the degrees of all the
polynomials encountered in the interaction is at most 3mn+n2. Thus, if we choose the size
of our field p large enough, the probability of error is at most (3mn+ n2)/p ≤ 1/2. 2

96

Exercises

1. Show that IP ⊆ PSPACE.

[Hint: it is easier to show the following stronger claim: that given a verifier V and
an input x, we can compute the maximum, over all provers’ strategies P ∗, of the
probability that V accepts x while interacting with P ∗.]

97

Lecture 15

Introduction to PCP

In this lecture we see the connection between PCP and hardness of approximation. In par-
ticular, we show that the PCP Theorem implies that MAX-3SAT cannot be approximated
within (1 − ε) for some ε > 0, unless P = NP. Also, we show that Max Clique cannot be
approximated within any constant factor.

15.1 Probabilistically Checkable Proofs

Definition 26 Given functions r(n), q(n), we say that L ∈ PCP(r(n), q(n)) if there is a
polynomial time probabilistic verifier V , which is given x, oracle access to a proof π, uses
r(|x|) random bits, reads q(|x|) bits of π and such that

x ∈ L ⇒ ∃π ·Pr[V π(x) = 1] = 1

x /∈ L ⇒ ∀π ·Pr[V π(x) = 1] ≤ 1
2 .

Theorem 69 (PCP Theorem) NP = PCP(O(log n), O(1)).

15.2 PCP and MAX-3SAT

15.2.1 Approximability

Definition 27 (MAX-3SAT) Given a 3CNF formula ϕ (i.e. with at most 3 variables per
clause), find an assignment that satisfies the largest number of clauses.

Note that MAX-3SAT generalizes 3SAT, and so cannot be solved in polynomial time
unless P = NP. However, it is easy to approximate it within a factor of 2:
Algorithm. Output the best solution between all-true and all-false.
Analysis. Every clause is satisfied by at least one of the two solutions, therefore one of

the solutions satisfies at least half of the clauses.
It is possible to do better. The Karloff-Zwick algorithm runs in polynomial time and

satisfies ≥ 7
8 times the optimal number of clauses.

Some problems admit polynomial time algorithms with approximation ratio ≥ (1−ε) ∀ε.
The PCP Theorem implies this is not the case for MAX-3SAT, as we see next.

98

15.2.2 Inapproximability

Theorem 70 The PCP Theorem implies that there is an ε > 0 such that (1−ε)-approximation
of MAX-3SAT is NP-hard.

Proof: Fix anyNP-complete problem L. By thePCP Theorem, L ∈ PCP(O(logn), O(1)).
Let V be the verifier for L.

Given an instance x of L, our plan is to construct a 3CNF formula ϕx on m variables
such that (for some ε > 0 to be determined)

x ∈ L ⇒ ϕx is satisfiable
x /∈ L ⇒ no more than (1− ε)m clauses of ϕx are satisfiable.

(15.1)

Without loss of generality, assume that V makes non-adaptive queries (by reading all the
bits that could possibly be needed at once). This assumption is valid because the number
of queries was a constant and remains a constant. Let q be the number of queries.

Enumerate all random strings R for V . The length of each string is r(|x|) = O(log |x|),
so the number of such strings is polynomial in |x|. For each Ri, V chooses q positions
i1, . . . , iq and a Boolean function fR : {0, 1}q → {0, 1} and accepts iff fR(π(i1), . . . , π(iq)).

We want a Boolean formula to simulate this. Introduce Boolean variables x1, . . . , xl,
where l is the length of the proof. Now we need a correspondence between the number of
satisfiable clauses and the probability that the verifier accepts.

For every R we add clauses that represent fR(xi1 , . . . , xiq). This can be done with 2q

SATclauses. We need to convert clauses of length q to length 3 with additional variables.
e.g. x2 ∨ x10 ∨ x11 ∨ x12 becomes (x2 ∨ x10 ∨ yR) ∧ (yR ∨ x11 ∨ x12). This requires at most
q2q 3SATclauses. In general there is a series of auxiliary variables for each R.

If z ∈ L, then there is a proof π such that V π(z) accepts for every R. Set xi = π(i) and
auxiliary variables in the right way, all clauses are satisfied.

If z /∈ L, then for every assignment to x1, . . . , xl (and to yR’s), the corresponding proof
π(i) = xi makes the verifier reject for half of the R ∈ {0, 1}r(|z|). For each such R, one of
the clauses representing fR fails. Therefore a fraction ε = 1

2
1
q2q of clauses fails. 2

It turns out if this holds for every NP-complete problem, then the PCP Theorem must
be true.

Theorem 71 If there is a reduction as in (15.1) for some problem L in NP, then L ∈
PCP(O(log n), O(1)), i.e. the PCP Theorem holds for that problem.

Proof: We describe how to construct a verifier for L. V on input z expects π to be a
satisfying assignment for ϕz. V picks O(1ε) clauses of ϕz at random, and checks that π
satisfies all of them. Randomness is O(1ε logm) = O(log |z|). O(1ε) = O(1) bits are read in
the proof.

z ∈ L ⇒ ϕz is satisfiable

⇒ ∃π such thatVπ(z) always accept.

z /∈ L ⇒ ∀π a fraction 1
ε of clauses are unsatisfied

⇒ ∀π V π(z) will reject with probability ≥ 1
2 (details omitted).

99

2

15.2.3 Tighter result

What is the best known value of ε in Theorem 70? In the next lectures we will prove the
following result:

Theorem 72 (H̊astad) There is a PCP verifier for NPthat uses O(log n) bits of ran-
domness which, based on R, chooses 3 positions i1, i2, i3 and a bit b and accepts iff π(i1)⊕
π(i2)⊕ π(i3) = b. The verifier satisfies

z ∈ L ⇒ ∃π ·Pr[V π(x) = 1] ≥ 1− ε (15.2)

z /∈ L ⇒ ∀π ·Pr[V π(x) = 1] ≤ 1
2 + ε (15.3)

Note the slightly non-standard bounds for the probabilities above. If we had “= 1” in
Equation (15.2), we could find a proof π by solving a system of linear equations (which
would imply P = NP). For every R, one can encode xi1 ⊕ xi2 ⊕ xi3 = b with 4 clauses in
3CNF.

If z ∈ L, then a fraction ≥ (1− ε) of clauses are satisfied.
If z /∈ L, then for a (12 − ε) fraction of R, 1

4 of clauses are contradicted.
This is not producing a formula directly, but is enough to prove the hardness of approx-

imation ratio:
1− 1

4(12 − ε)
1− ε = 7

8 + ε′

15.3 Max Clique

15.3.1 Approximability

Definition 28 (Max Clique) Given an undirected graph G = (V,E), find the largest C ⊆
V such that ∀u, v ∈ C, (u, v) ∈ E. When convenient, we use the complementary graph
equivalent “Max Independent Set” which is the largest I ⊆ V such that ∀u, v ∈ I, (u, v) /∈ E.

Finding a largest clique is NP-hard, so we ask about approximations. There is a sim-
ple logn

n -approximation:

• arbitrarily partition the graph into subsets of size log n

• solve exactly each subset

• report the largest clique found

Suppose there is a clique of size αn, then one of the subset contains a clique of size

α log n, hence the approximation. Best known is a (logn)2

n -approximation algorithm.

100

x
1

x
3

x
3

x
5

x
2

x
4 x

5

x
1

x
1

x
3

x
5

x
2

Figure 15.1: Graph construction corresponding to the 3CNF formula ϕ = (x1 ∨ x2 ∨ x3)∧
(x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x5).

15.3.2 Inapproximability

We apply the PCP Theorem to Max Independent Set. Given a 3CNF formula ϕ = c1 ∧
c2 ∧ . . .∧ cm over variables x1, . . . , xn arising from Theorem 70, we build a graph using the
same construction as in the NP-completeness proof of Independent Set in Lecture 3 (see
Figure 15.1).

The graph has 3m vertices. Note that G has an independent set of size m iff ϕ is
satisfiable, and G has an independent set with k vertices iff ϕ has an assignment that satisfies
k clauses. So the hardness results for MAX-3SAT translate directly to Max Independent
Set. Below we show how this can be further improved.

Given G = (V,E), consider G′ = (V ′, E′) where V ′ = V ×V and ((u1, u2), (v1, v2)) ∈ E′
iff (u1, v1) ∈ E or (u2, v2) ∈ E. It can be shown that the size of the maximum independent
set in G′ is equal to (size of max ind. set in G)2. As a sidenote, this result is not true for
cliques (a clique in G′ could be possibly larger than expected), unless we use a different
definition of G′.

By a constant number of applications of the graph product operation, we get:

graph G G′ G′′

size of ind. set if ϕ is satisfiable m m2 m4

size of ind. set if only (1− ε)m clauses
of ϕ are satisfiable

(1− ε)m (1− ε)2m2 (1− ε)4m4

The ratio decreases without bound, therefore there can be no constant approximation
algorithm for Max Clique. In fact:

Theorem 73 (H̊astad) If NP 6= ZPP, then ∀ε > 0, Max Independent Set cannot be
approximated within 1

n1−ε (n is the number of vertices).

15.4 References

The PCP Theorem is from [AS98, ALM+98], and the connection between proof-checking and
approximability is due to [FGL+96]. Karloff and Zwick [KZ97] describe a 7/8 approximation
algorithm for Max 3SAT. H̊astad’s result on three-query PCP is from [H̊as01]. H̊astad’s
result on the approximability of the Max Clique problem is from [H̊as99].

101

Lecture 16

H̊astad’s Proof System

In this lecture we introduce H̊astad’s PCP verifier, which yields stronger hardness results
than the raw PCP theorem. In particular, we derive asymptotically optimal hardness of
approximation results for Max E3LIN2 and Max 3SAT. We also show that Max 2SAT and
Min Vertex Cover are hard to approximate within 21/22 + o(1) and 7/6 + o(1) of their
optimum, respectively. Finally, we outline the connection between the PCP theorem and
H̊astad’s verifier.

16.1 H̊astad’s verifier

To describe H̊astad’s verifier, we will need a more detailed parametrization of PCP. Say
a language L is in PCPc,s[r(n), q(n)] if there is a probabilistic polynomial time verifier V
which, given input x and oracle access to a proof π, uses r(|x|) random bits, reads q(|x|)
bits of π and such that

x ∈ L ⇒ ∃π : Pr[V π(x) = 1] ≥ c
x 6∈ L ⇒ ∀π : Pr[V π(x) = 1] < s.

The values c and s are called the completeness and the soundness of the verifier, respectively.
If, in addition to these conditions, the verifier V makes its queries nonadaptively, we say
L ∈ naPCPc,s[r(n), q(n)].

Theorem 74 (H̊astad) For every constant ε > 0, NP = naPCP1−ε,1/2+ε[O(logn), 3].
Moreover, the verifier for any L ∈ NP is simple: V π generates three indices i, j, k and one
bit b and accepts iff π[i]⊕ π[j]⊕ π[k] = b.

We will sketch how to derive H̊astad’s theorem from the PCP theorem in the next few
lectures. We remark that the theorem achieves the best possible values for its parameters
in several ways. In particular, we have the following lower bounds:

1. Number of queries. (Folklore) For every ε > 0, P = PCP1,1−ε[O(logn, 2)] and (Zwick)
P = PCP1−ε,1−ε1/3 [O(logn), 2].

2. Completeness vs. soundness. (Zwick) If c/(1−s) ≥ 2, thenP = PCPc,1−s[O(logn), 3].

102

3. Completeness. (Zwick) P = naPCP1,5/8[O(logn), 3].

However, perfect completeness can be bought by giving away soundness or nonadaptivity:

1. (H̊astad) For all ε > 0, NP = naPCP1,3/4+ε[O(logn), 3]. It is not known whether
this soundness constant is optimal for perfect completeness.

2. (Guruswami, Lewin, Sudan and Trevisan) For all ε > 0,NP = PCP1,1/2+ε[O(logn), 3].

16.2 Applications to hardness of approximation

We show that H̊astad’s theorem implies the following hardness of approximation factors:
1/2 + o(1) for Max E3LIN2, 7/8 + o(1) for Max 3SAT, 21/22 + o(1) for Max 2SAT and
7/6−o(1) for Min Vertex Cover. The proofs use approximation preserving reductions similar
to the ones we saw last time.

Linear equations modulo 2. Max E3LIN2 is the problem of finding a maximum assign-
ment to a linear system of equations modulo 2, with three distinct variables per equation.
The value of an assignment is the number of equations satisfied by it. The problem of decid-
ing whether a satisfying assignment of an E3LIN2 instance exists is P—it can be solved by
Gaussian elimination. Obtaining a 1/2-approximation for Max E3LIN2 is trivial: Consider
the two assignments xi = 0 for all i and xi = 1 for all i, and choose the one that satisfies
more equations. This assignment will satisfy at least half of the equations.

Surprisingly, a 1/2 approximation is asymptotically optimal, unless P = NP. To show
this, we construct a reduction ψ from an arbitrary NP language L to E3LIN2. Consider
H̊astad’s verifier V for L: On input z, V π generates a random string r of length R =
O(log |z|), computes three indices i(r), j(r), k(r) and a bit b(r), queries π at positions i, j, k
and accepts iff π[i(r)]⊕ π[j(r)]⊕ π[k(r)] = b(r). The reduction ψ maps z to the system of
equations

{xi(r) ⊕ xj(r) ⊕ xk(r) = b(r) | r ∈ {0, 1}R}.

This is a polynomial-time reduction, as the number of equations is m = |{0, 1}R| = |z|O(1).
If z ∈ L, there exists a proof π such that V π(x) accepts with probability 1 − ε over the
choice of r. In this case, the assignment xi = π[i] satisfies (1−ε)m of the equations ψ(z). If,
on the other hand, some assignment xi = ai satisfies (1/2 + ε)m of the equations ψ(z), then
the proof π such that π[i] = ai makes V π(z) accept with probability (1/2 + ε)m, implying

z ∈ L. It follows that E3LIN2 is inapproximable within a factor of (1/2+ε)m
(1−ε)m ≤ 1/2 + 2ε,

unless P = NP.

Max 3SAT. The 7/8 + ε inapproximability of Max 3SAT follows by reduction from Max
E3LIN2. The reduction ψ from E3LIN2 to 3SAT maps each equation x⊕ y ⊕ z = b into a
conjunction of four clauses:

x⊕ y ⊕ z = 0 ⇔ (x̄ ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ y ∨ z̄)
x⊕ y ⊕ z = 1 ⇔ (x ∨ y ∨ z) ∧ (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z).

103

Consider an instance I of E3LIN and an assignment a for I. If an equation in I is satisfied
by a, all four corresponding clauses in ψ(I) are satisfied by a. Otherwise, exactly three of
these four clauses are satisfied by a. Therefore, if (1−ε)m equations of I are satisfiable, then
4(1−ε)m+3εm clauses of ψ(I) are satisfiable (by the same assignment). On the other hand,
if at most (1/2 + ε)m equations of I are satisfiable, then at most 4(1/2 + ε)m+ 3(1/2− ε)m
clauses of ψ(I) are satisfiable. The ratio between these two values is less than 7/8 + ε.

The factor 7/8 is optimal: All instances ψ(I) have exactly three literals per clause, so a
random assignment is expected to satisfy 7m/8 clauses. Even for arbitrary 3SAT instances,
which may contain two literal and one literal clauses, there is a 7/8 approximation algorithm
based on semidefinite programming.

Max 2SAT. Unlike for Max 3SAT, there is no representation of an E3LIN2 equation by
a short 2CNF formula. The reduction from E3LIN2 to 2SAT uses auxiliary variables:
Given an equation x1 ⊕ x2 ⊕ x3 = b, there exists a 12 clause 2CNF φ over variables
x1, x2, x3, y1, y2, y3, y4 such that:

1. Every assignment of φ satisfies at most 11 clauses.

2. If a1 ⊕ a2 ⊕ a3 = b, there is an assignment that satisfies 11 clauses of φ such that
x1 = a1, x2 = a2 and x3 = a3.

3. If a1 ⊕ a2 ⊕ a3 6= b, every assignment of φ such that x1 = a1, x2 = a2 and x3 = a3
satisfies at most 10 clauses of φ.

We reduce an E3LIN2 instance I to a 2CNF instance ψ(I) by applying this construction to
every equation of I. We instantiate distinct copies of y1, y2, y3 and y4 for every equation of
I. If (1−ε)m equations of I are satisfiable, then 11(1−ε)m of their corresponding clauses in
ψ(I) are satisfiable (by property 2). If fewer than (1/2 + ε)m equations of I are satisfiable,
then at most 11(1/2 + ε)m+ 10(1/2− ε)m equations of ψ(I) are satisfiable (by properties 1
and 3). The ratio between these two values is 21/22 +O(ε) ≈ 0.954 +O(ε). Using the same
approach, one can show that Max Cut cannot be approximated within 16/17 + ε, unless
P = NP.

The best known approximation algorithm for Max 2SAT is based on semidefinite pro-
gramming and guarantees a ≈ 0.93 approximation.

Min Vertex Cover. A vertex cover for a graph G is a set C ⊆ V (G) such that every edge
of G has at least one endpoint in C. Equivalently, C is a vertex cover of G if V (G)− C is
an independent set. We show that the minimum vertex cover of G cannot be approximated
within 7/6, unless P = NP. Let I be an instance of E3LIN2. For every equation x1⊕ x2⊕
x3 = b in I, we produce four vertices for ψ(I). Each of these corresponds to an assignment
of x1, x2 and x3 that is consistent with the equation. We draw edges between all pairs of
vertices that originated from the same equation, as well as between all pairs of vertices
that correspond to inconsistent assignments. If (1− ε)m equations of I are satisfiable, then
ψ(I) contains an independent set of size (1− ε)m: The independent set is made of vertices
corresponding to satisfied clauses consistent with the optimal satisfying assignment of I.
The complement of this independent set is a vertex cover of size at most (3+ε)m. If at most
(1/2 + ε)m equations of I are satisfiable, then every set of (1/2 + ε)m+ 1 vertices of ψ(I)

104

contains an edge. Therefore the largest independent set of V (G) has at most (1/2 + ε)m
vertices, so its smallest vertex cover has at least (3 1

2 − ε)m vertices. The ratio between
these two values is 7/6 − O(ε). The best known inapproximability ratio for this problem
is 10

√
5 − 21 ≈ 1.36. A trivial algorithm that picks all endpoints of an arbitrary maximal

matching achieves a factor 2 approximation. No algorithm is known that improves this
factor asymptotically.

16.3 From the PCP theorem to Raz’s verifier

The PCP theorem says that for some constant δ > 0, NP = PCP1,δ[O(logn), O(1)].
Assuming this theorem, we sketch the proof of Theorem 74. The main ingredient is a proof
system for NP of Raz that makes only two queries, but over proofs represented in a large
alphabet. To prove Theorem 74, the first step is to show that the proof system of Raz
is equivalent to PCP1,δ[O(logn), O(1)]. The second step is to construct a simulation of
the two queries performed by Raz’s verifier by three queries over an appropriate binary
encoding of Raz’s proof. Here we cover the first step of the argument.

Raz’s proof system. A two-proof system for L with soundness γ is a probabilistic
polynomial-time verifier V with oracle access to two proofs, π1 and π2 over an alphabet
of size 1/γO(1) such that on input x, V performs exactly one query into each of π1 and π2,
and

x ∈ L ⇒ ∃π1, π2 : Pr[V π1,π2(x) = 1] = 1

x 6∈ L ⇒ ∀π1, π2 : Pr[V π1,π2(x) = 1] < γ.

We show that the PCP theorem implies the existence of a two-proof system with sound-
ness δ for some δ > 0 for any language in NP. First, using a canonical reduction, we can
restate the PCP theorem in the following form: For every L ∈ NP, there is a polynomial-
time reduction ψ that maps instances of L into 3CNF formulas such that

x ∈ L ⇒ ψ(x) is satisfiable

x 6∈ L ⇒ At most (1− δ)m clauses of ψ(x) are satisfiable.

We now construct a two-proof system for 3SAT. The proofs π1 and π2 are supposed to
represent different encodings of an assignment for the input φ. For each variable xi, the value
π1[i] ∈ {0, 1} represents an assignment of xi. For each clause Cj , the value π2[j] ∈ {1, . . . , 7}
represents one of the seven satisfying assignments for Cj . The verifier V π1,π2 chooses a
random clause Cj , a random variable xi that appears in Cj and accepts iff the assignments
π1[i] and π2[j] are consistent.

If φ is satisfiable, the proofs π1 and π2 encoding a satisfying assingment of φ make V π1,π2

accept with probability 1. Now suppose that at most (1− δ)m clauses of φ are satisfiable.
Then at least a δ fraction of entries in π2 are inconsistent with π1. If one of these entries
in π2 is selected by the verifier, at least one of its three literals is assigned inconsistently in
π1. Therefore an inconsistency is detected with probability δ/3.

105

We will need a two-proof system for NP with much better soundness. We expect
to increase soundness by “repeating” the two-proof protocol for 3SAT several times. A k-
repetition two-proof system for 3SAT is specified as follows: The proof entries π1[i1, . . . , ik] ∈
{0, 1}k and π2[j1, . . . , jk] ∈ {1, . . . , 7}k represent partial assignments to the k-tuples of
variables xi1 , . . . , xik and k-tuples of clauses Cj1 , . . . , Cjk , respectively. The verifier V π1,π2

chooses a random set of k clauses, a random variable in each clause and accepts iff the cor-
responding assignments in π1 and π2 are consistent. We might expect that the k-repetition
of a two-proof system with soundness 1−γ has soundness (1−γ)k. Surprisingly, this is not
the case; in the next lecture we will see a two-proof system with soundness 1/2 such that
its 2-repetition has soundness only 5/8. Fortunately, repetition does amplify soundness at
an exponential rate:

Theorem 75 (Raz) If V is a two-proof verifier with soundness γ, the k-repetition of V
has soundness 2−Ω(k), where the constant in the Ω() notation depends only on γ and on the
alphabet size of the proof system.

Applying this theorem (which we won’t prove), we conclude that for every γ > 0 there
exists a 2-proof system for 3SAT with soundness γ with proofs over alphabets of size 1/γO(1).
In the next three lectures we will show that for suitably small γ = γ(ε), this 2-proof system
can be simulated by naPCP1−ε,1/2+ε[O(logn), 3].

16.4 References

H̊astad’s PCP result is from [H̊as01]. Raz’s result (Theorem 75) is from [Raz98].

106

Lecture 17

Linearity Test

As part of our preparation for an analysis of H̊astad’s proof system (next lecture), we need
to consider the problem of testing whether a given string is a code word for some particular
code. First, we will see a procedure that, given a string which may or may not be a code
word for the Hadamard code, will decide if it is a code word or if it is far from being a code
word. This is equivalent to a test that decides whether a Boolean function is linear or far
from linear. That is, given f : {0, 1}k → {0, 1},

• if f is linear, i.e. f(x1, . . . , xn) =
⊕

i∈S xi for some S ⊆ {1, . . . , n}, the test accepts
with probability 1;

• if the test accepts with probability at least 1/2 + δ, then f has agreement at least
1/2 + ε with a linear function.

Here is a possible test:

1. pick x, y ∈ {0, 1}k

2. accept if and only if f(x)⊕ f(y) = f(x⊕ y).

We need to show that this test meets the requirements above. In order to analyze the test,
we will introduce some concepts from Fourier analysis of Boolean functions.

17.1 Fourier analysis of Boolean functions

We are interested in linear functions, that is Boolean functions l : {0, 1}k → {0, 1} such
that there is some a ∈ {0, 1}k for which l(x) = a · x for every x. There is a linear function
lS for every set S ⊆ {1, . . . , k} and it is defined as lS(x1, . . . , xk) =

⊕

i∈S xi.
If f : {0, 1}k → {0, 1} is a Boolean function, we denote by F : {−1, 1}k → {−1, 1} the

equivalent Boolean function in the representation where we use 1 instead of 0, −1 instead
of 1, and multiplication (·) instead of addition (⊕). That is,

f(x1, . . . , xk) =
1

2
− 1

2
F (1− 2x1, . . . , 1− 2xk)

107

and

F (x1, . . . , xk) = 1− 2f

(
1

2
− 1

2
x1, . . . ,

1

2
− 1

2
xk

)

Note that if lS is a linear function, then LS(x1, . . . , xk) =
∏

i∈S xi is the equivalent
function in this correspondence.

Consider now the set of functions F : {−1, 1}k → R: this is a vector space of dimension
2k over the reals, and it contains all boolean functions. Define the following scaled dot
product over such functions:

F ·G =
1

2k

∑

x∈{−1,1}k
F (x)G(x)

Notice that if F : {−1, 1}k → {−1, 1}, i.e. if F is a Boolean function in this space, then
F · F = 1. Also notice that if F,G : {−1, 1}k → {−1, 1} then

Pr[f(x) = g(x)] =
1

2
+

1

2
F ·G

How do the linear Boolean functions behave with respect to this dot product? Consider
two linear functions LS and LT , S 6= T :

LS · LT =
1

2k

∑

x∈{−1,1}k

(
∏

i∈S
xi

)


∏

j∈T
xj





=
1

2k

∑

x∈{−1,1}k

∏

i∈S∆T
xi

= Ex∈{−1,1}k
∏

i∈S∆T
xi =

∏

i∈S∆T
Exxi = 0,

where S∆T = (SÂT) ∪ (TÂS) is the symmetric difference of S and T . To get the
third line, we think of the sum as an expectation over x ∈ {−1, 1}k, where x is chosen
randomly by setting the ith entry independently to ±1, and therefore it is the expectation
of a product of independent variables.

So all functions LS are orthogonal to each other, that is, LS · LT = 0 if S 6= T .
Then all such functions must be linear independent, and since there are 2k of them in a
space of dimension 2k they form an orthonormal basis. So we can write each function
F : {−1, 1}k → R as

F (x) =
∑

S⊆{1,...,k}
F̂SLS(x).

This is known as the Fourier expansion of F . The Fourier coefficient F̂S can be computed
as F̂S = F · LS . Why would we write F like this? We’ll see that the Fourier coefficients
have a useful interpretation.

108

If F is Boolean, then

F̂S = F · LS
= ExF (x)LS(x)

= Prx[F (x) = LS(x)]−Prx[F (x) 6= LS(x)]− 1

= 2Prx[F (x) = LS(x)]− 1

= 2Prx[f(x) = lS(x)]− 1.

Equivalently, for every S, we have Prx[f(x) = lS(x)] = 1
2 + 1

2 F̂S . The Fourier coefficients
range between 1 and −1, and in a sense, they represent the bias that a Boolean function f
has with respect to each of the linear functions. The coefficient F̂S is 1 when f is exactly
the corresponding linear function lS , and it is -1 when f is exactly the complement of the
linear function.

We will see that if the linearity test for a Boolean function f given at the beginning of
the lecture accepts with high probability, then there is a large Fourier coefficient F̂S , which
implies that there is a linear function lS with nontrivial agreement with f . First, we need
a couple of results about Fourier coefficients.

Lemma 76 (Parseval’s Equality) For every F : {−1, 1}k → R, Ex[F 2(x)] =
∑

S F̂
2
S .

One way to interpret this is that the set of values of F and the Fourier coefficients in
the expansion of F have the same l2 norm up to a constant.

Corollary 77 For every F : {−1, 1}k → {−1, 1}, ∑S F̂
2
S = 1.

Lemma 78 Let f : {−1, 1}k → {−1, 1}. There are at most 1/(4ε2) linear functions lS such
that f and lS have agreement at least 1/2 + ε.

We have used the result in Lemma 78 before when we did worst case to average case
reductions. We can easily prove it now using what we know about Fourier coefficients.

Proof: [Lemma 78] Suppose ls and f have agreement at least 1/2 + ε. Then F̂S ≥ 2ε,
which implies that F̂ 2

S ≥ 4ε2, but from Corollary 77, we know that
∑

S F̂
2
S = 1. So there

can be at most 1/(4ε2) functions lS with that much agreement with f . 2

Proof: [Lemma 76 (Parseval’s Equality)]

Ex[F 2(x)] = Ex

[(
∑

S

F̂SLS(x)

)(
∑

T

F̂TLT (x)

)]

=
∑

S

∑

T

F̂SF̂TEx[LS(x)LT (x)]

=
∑

S

∑

T

F̂SF̂TLS · LT

=
∑

S

F̂ 2
S .

2

109

17.2 Using Fourier analysis to test linearity

Now consider the test to check if f : {0, 1}k → {0, 1} is linear: pick at random x, y ∈ {0, 1}k
and accept iff f(x)⊕ f(y) = f(x⊕ y). If f is linear then the test accepts with probability
one.

Lemma 79 If the test accepts f with probability p, then there is a linear function lS that
agrees with f on at least a p fraction of inputs.

Proof: First observe that

Pr[test accepts f] =
1

2
+

1

2
Ex,y[F (x)F (y)F (xy)].

This follows from the same type of argument we have made before, based on the fact that
F (x)F (y)F (xy) is 1 when the test accepts and −1 when it rejects:

Ex,y[F (x)F (y)F (xy)] = Prx,y[test accepts f]−Prx,y[test rejects f]

= 2Prx,y[test accepts f]− 1.

Now, we need to prove that when Ex,y[F (x)F (y)F (xy)] is bounded away from zero,
there is a large Fourier coefficient. To do this we just use the Fourier expansion of each
function and simplify.

Ex,y[F (x)F (y)F (xy)] = Ex,y

[(
∑

S

F̂SLS(x)

)(
∑

T

F̂TLT (y)

)(
∑

U

F̂ULU (xy)

)]

=
∑

S

∑

T

∑

U

F̂SF̂T F̂UEx,y[LS(x)LT (y)LU (x)LU (y)]

=
∑

S

∑

T

∑

U

F̂SF̂T F̂U (ExLS(x)LU (x)) (EyLT (y)LU (y))

=
∑

S

∑

T

∑

U

F̂SF̂T F̂U (LS · LU)(LT · LU)

=
∑

S

F̂ 3
S ≤ max

S
F̂S
∑

S

F̂ 2
S = max

S
F̂S .

So the largest Fourier coefficient of F is an upper bound on the expectationEx[F (x)F (y)F (xy)],
and the expectation tells us how likely the test is to accept f . We have shown so far that
for every S, Prx[f(x) = lS(x)] = 1

2 + 1
2 F̂S , and that Pr[test accepts f] ≤ 1

2 + 1
2 maxS F̂S .

Therefore if Pr[test accepts f] ≥ 1/2 + ε, then there exists an S such that F̂S ≥ 2ε, i.e.
there is an S such that f and lS have agreement on at least 1/2 + ε fraction of inputs. 2

Since not more than 1 in 4ε2 functions can have that much agreement with f , if we do
list decoding for f then we come up with a small list.

110

17.3 Testing code words for the Long Code

So far, we have been thinking of the encoding of a message m ∈ {0, 1}k in the Hadamard
code as a function lS , where S = {i : mi = 1}. An equivalent way to think of the encoding
is as the concatenation of a1 ·m, a2 ·m, . . . a2k ·m where a1, . . . , a2k is an enumeration of
{0, 1}k. This is how we though of the code in worst case to average case reductions. It is
also equivalent to think of the encoding as the concatenation of lS1(m), lS2(m), . . . , lS

2k
(m),

where S1, . . . , S2k is an enumeration of subsets of Bk, that is, the encoding is the concatena-
tion of the evaluation of all possible linear functions at m. In fact, for any code, it is possible
to think of the encoding as the concatenation of the evaluation of a series of functions at
the input value.

Let us now consider the error correcting code, called the Long Code, used in H̊astad’s
proof system. One way to think of the encoding of m ∈ {1, . . . , k} in the Long Code is
as a functional M : ({1, . . . , k} → {0, 1}) → {0, 1} that given a function f : {1, . . . , k} →
{0, 1} returns M(f) = f(m). Equivalently, the encoding of m can be thought of as the
concatenation of f1(m), f2(m), . . . , f2k(m) where f1, . . . , f2k is an enumeration of all possible
functions f : {1, . . . , k} → {0, 1}. Every error correcting code can be seen as a subset of
this code, and no encoding can be longer than the Long Code unless two of the functions
being evaluated are exactly the same.

Notice that the Long Code is doubly exponentially long: in order to transmit log k bits
of information (since m ∈ {1, . . . , k}), we need to send an encoding that takes 2k bits. In
H̊astad’s proof system, the code is only used on inputs of a constant size, so this blow-up
does not cause a problem.

Another equivalent way to think of the encoding of m is as the concatenation of
a1[m], a2[m], . . . , a2k [m] where a1, . . . , a2k is an enumeration of a ∈ {0, 1}k, that is, it is
a concatenation of the mth entry in each string of length k. Equivalently, the encod-
ing is a function that maps strings to one of their bits: the encoding of m is a function
M : {0, 1}k → {0, 1} that given an x ∈ {0, 1}k returns M(x) = x[m]. From this point of
view, the Long Code encodes a message m ∈ {1, . . . , k} as a special linear function l{m}.
There is a loss of expressive power in this representation l{m} (note that it requires only
log k bits of information), but it is convenient for our purposes.

17.3.1 Pre-H̊astad verification

To get some understanding of how the Long Code test works in verification, we’ll start
by considering the verification model in vogue before H̊astad’s verifier. Given a function
A : {0, 1}k → {0, 1}, we want the verifier to check that A is actually a code word for the
Long Code as follows: for some predicate P , the verifier should check that there is some
a ∈ {1, . . . , k} satisfying the predicate, P (a) = 1, such that given any string x, A(x) = x[a],
or in other words, A corresponds to some linear function l{a}.

So suppose that after performing some test, we find that A has agreement 1 − δ with
some l{a}.

Then define the vector p ∈ {0, 1}k such that p[i] = P (i) for every i, and do the following
test: choose a random x ∈ {0, 1}k and accept if and only if A(p⊕ x)⊕A(x) = 1.

For a random x, x⊕ f is also random, and so there is at least a 1− 2δ probability that

111

both A(x) = x[a] and A(p ⊕ x) = p[a] ⊕ x[a]. Thus, if P (a) = 1, the test accepts with
probability at least 1− 2δ, and if P (a) = 0 the test accepts with probability at least 2δ.

17.3.2 The Long Code test

Given A : ({1, . . . , k} → {0, 1})→ {0, 1},

• pick f, g : {1, . . . , k} → {0, 1} uniformly

• pick h : {1, . . . , k} → {0, 1} such that for every x

h(x) =

{

0 with probability 1− ε
1 with probability ε

• accept iff A(f)⊕A(g) = A(f ⊕ g ⊕ h)

Suppose that A = l{a}. Then with high probability the test will accept since with high
probability f(a) ⊕ g(a) = f(a) ⊕ g(a) ⊕ h(a). If A has no correlation with any linear
function then this test is close enough to a test for linearity that the test will fail. If A is
linear but not a code word for the Long Code , it cannot be defined over a very large set.
Suppose A = lS for some set S. Then the probability that

⊕

x∈S
f(x)

⊕

x∈S
g(x) =

⊕

x∈S
f(x)

⊕

x∈S
g(x)

⊕

x∈S
h(x)

gets exponentially close to 0 with the cardinality of S.

17.4 References

The linearity test studied in these notes is due to Blum, Luby and Rubinfeld [BLR93]. The
analysis that we presented is due to Bellare et al. [BCH+96]. The Long Code was introduced
by Bellar, Goldreich and Sudan [BGS98]. The efficient test is due to H̊astad [H̊as01].

112

Exercises

1. Show that if f : {0, 1}n → {0, 1} is an arbitrary function, then maxS |F̂S | ≥ 2−n/2.

2. Compute the Fourier coefficients of the function f(x1, x2) = x1 ∨ x2.

3. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be arbitrary functions, and let
h : {0, 1}n+m → {0, 1} be defined as

h(x1, . . . , xn+m) = f(x1, . . . , xn)⊕ g(xn+1, . . . , xn+m)

Compute the Fourier coefficients of h in terms of the Fourier coefficients of f and g.

4. Let n be even and consider the function

f(x1, . . . , xn) = (x1 ∨ x2)⊕ (x3 ∨ x4)⊕ · · · (xn−1 ∨ xn)

Prove that maxS |F̂S | = 2−n/2.

5. Suppose that f : {0, 1}n → {0, 1} is a function that depends only on its firts k
variables, that is, suppose that there is a function g : {0, 1}k → {0, 1} such that
f(x1, . . . , xn) = g(x1, . . . , xk). Compute the Fourier coefficients of f in terms of the
Fourier coefficients of g.

6. Analyse the following linearity test: given oracle access to a function f : {0, 1}n →
{0, 1}, pick uniformly at random four points x1, x2, x3, x4 ∈ {0, 1}n and accept if and
only if

f(x1)⊕ f(x2)⊕ f(x3)⊕ f(x4) = f(x1 ⊕ x2 ⊕ x3 ⊕ x4)

113

Lecture 18

Testing the Long Code

18.1 Test for Long Code

We now consider a test to distinguish codewords of the long code. Given A : {0, 1}k → {0, 1}
pick x, y ∈ {0, 1}k uniformly and z ∈ {0, 1}k where the bits of z are IID with Pr[z[i] = 1] = ε.
Accept iff A(x)⊕A(y) = A(x⊕ y ⊕ z).

If A is a codeword of the long code, then A = l{a} and the test check if x[a] ⊕ y[a] =
x[a]⊕ y[a]⊕ z[a] and succeeds iff z[a] = 0. Hence it succeds with probability 1− ε.

We now show that if the test accepts with probability 1/2 + δ, then list decoding of the
codeword produces a list with size dependent on δ rather than k. Intuitively this is similar
to the linearity test of the last lecture.

Consider the case where A is a linear function with large support: A = lS , S is large.
Then the test checks if lS(x)⊕ lS(y) = lS(x)⊕ lS(y)⊕ lS(z) and will succeed iff lS(z) = 0.
The probability of this occurring is 1

2 + 1
2(1 − 2ε)|S|. So the test cannot accept with high

probability if A is not linear or if A is linear but has large support.
We now consider the equivalent setting where we replace 0 with 1, 1 with -1, and

⊕ with × so that A : {−1, 1} → {−1, 1}, x, y, z ∈ {−1, 1}k. Here the test accepts
iff A(x)A(y)A(xyz) = 1. Specifically, Pr[test accepts A] = 1

2 + 1
2Ex,y,z[A(x)A(y)A(xyz)]

114

where:

Ex,y,z[A(x)A(y)A(xyz)]

= Ex,y,z

[(
∑

S

ÂSLS(x)

)(
∑

T

ÂTLT (y)

)(
∑

U

ÂULU (x)LU (y)LU (z)

)]

=
∑

S,T,U

ÂsÂT ÂU

LS ·LU
︷ ︸︸ ︷

(Ex[LS(x)LU (x)])

LT ·LU
︷ ︸︸ ︷

(Ey[LT (y)LU (y)])(EzLU (z))

=
∑

S

Â3
SEz[LS(z)]

=
∑

S

Â3
S

∏

i∈S
E[zi]

=
∑

S

Â3
S(1− 2ε)|S|

≤
(

max
S

ÂS(1− 2ε)|S|
)

·
=1

︷ ︸︸ ︷
∑

S

Â2
S

Now suppose that the probability that the test accepts is greater than 1
2 +δ. Then there

is some S where ÂS(1− 2ε)|S| ≥ 2δ. Hence:

ÂS ≥ 2δ

(1− 2ε)|S| ≥ 2δ

|S| log
1

1− 2ε
≤ log

1

2δ

|S| ≤ log 1
2δ

log 1
1−2ε

This is close to the the analysis of H̊astad’s proof system. The primary difference is that
H̊astad’s system looks at two strings rather than one.

18.2 H̊astad’s verifier

First recall Raz’s verifier:

P Q

V

i j

The proof P is over the alphabet Σ, |Σ| = k and the proof Q is over the alphabet
Γ, |Γ| = t. The verifier takes the character at position i from P and the character j from Q,

115

where j is selected at random and i is selected at random from a few positions of P . The
verifier accepts iff P [i] = π(Q[i]).

Now consider H̊astad’s verifier:

P Q

V

i j

In the proofs for H̊astad’s verifier, the binary strings indexed by i, j are the long code
encodings of the characters at those positions in Raz’s Verifier. H̊astad’s verifer selects i, j
the same way as Raz’s so that the problem can be modeled as:

A : {0, 1}k → {0, 1}

B : {0, 1}t → {0, 1}
V

Here the function π : {1, . . . , t} → {1, . . . , k} is as before. The verifier will accept with
probability greater than 1 − ε if A is the long code of P [i], B is the long code of Q[j]
and π(Q[j]) = P [i]. We will show that if the test accepts with probability 1

2 + ε then
Pr[D(A) = π(D(B))] ≥ poly(ε).

We digress for a moment to consider a subtle point about the long code test. What if
S = ∅? This is the case where the function is 0 everywhere. Then the test passes with
probability 1. This would not be a problem if the function is balanced. A function A is
self-dual if:

A(1− x) = 1−A(x) when x,A(x) ∈ {0, 1}
A(−x) = −A(x) when x,A(x) ∈ {−1, 1}

For example, ⊕ of an even number of inputs is not self-dual while ⊕ of an odd number
of inputs is self-dual. If A is self-dual then ÂS = 0 if |S| is even. Consider the following
procedure called “folding” to convert any function A : {0, 1}k → {0, 1} into a self dual
function A′ : {0, 1}k → {0, 1}:

A′(x) =

{
A(x) if x[1] = 0
1−A(1− x) if x[1] = 1

This is self-dual since:

A′(1− x) =

{
1−A(x) = 1−A′(x) if x[1] = 0
A(1− x) = 1−A′(x) if x[1] = 1

116

In our case of interest, the long code, then A′ = A. In the following analysis, all testing
and decoding is performed on A′, B′.

Given A : {0, 1}k → {0, 1}, B : {0, 1}t → {0, 1}, π : {1, . . . , t} → {1, k} we pick x ∈
{0, 1}k, y ∈ {0, 1}t uniformly. We also pick z ∈ {0, 1}t where the bits are IID with Pr[z[i] =
1] = ε. The test accepts iff:

A′(x)⊕B′(y) = B′((x ◦ π)⊕ y ⊕ z)

(From now on we will stop distinguishing between A and A′ and between B and B′.)
Treating vectors as functions, x ◦ π ∈ {0, 1}t, (x ◦ π)[i] = x[π(i)]. In the case where the

proof is based on a valid proof for Raz’s verifier, we have a = P [i], b = Q[j], A = l{a}, B =
l{b}, π(b) = a and the test checks if:

x[a]⊕ y[b] = x[π(b)]⊕ y[b]⊕ z[b] = x[a]⊕ y[b]⊕ z[b]

And hence the test accepts with probability 1 − ε. Considering the equivalent setting of
A : {−1, 1}k → {−1, 1}, B : {−1, 1}t → {−1, 1}. Using the Fourier analysis machinery we
know that:

Pr[test accepts] =
1

2
+

1

2
Exyz[A(x)B(y)B((x ◦ π)yz)].

Define π2(β) , {i ∈ {1, . . . , k}|an odd number of j ∈ β satisfy π(j) = i} so that
∏

j∈γ x[π(j)] =
∏

i∈π2(γ)
xi. We can then calculate:

Ex,y,z[A(x)B(y)B((x ◦ π)yz)]

= Ex,y,z





(
∑

α

ÂαLα(x)

)


∑

β

B̂βLβ(y)





(
∑

γ

B̂γLγ(x ◦ π)Lγ(y)Lγ(z)

)



=
∑

α,β,γ

ÂαB̂βB̂γ

Lα·Lπ2(γ)
︷ ︸︸ ︷

Ex[Lα(x)Lγ(x ◦ π)]

Lβ ·Lγ
︷ ︸︸ ︷

Ey[Lβ(y)Lγ(y)]

(1−2ε)|γ|
︷ ︸︸ ︷

Ez[Lγ(z)]

=
∑

β

Âπ2(β)B̂
2
β(1− 2ε)|β|

Now suppose that Pr[test accepts] ≥ 1
2 + δ so that:

2δ ≤
∑

β

Âπ2(β)B̂
2
β(1− 2ε)|β|

≤
∑

β

|Âπ2(β)|B̂2
β(1− 2ε)|β|

=
∑

β:|Âπ2(β)|≥δ

|Âπ2(β)|B̂2
β(1− 2ε)|β| +

<δ
︷ ︸︸ ︷
∑

β:|Âπ2(β)|<δ

|Âπ2(β)|B̂2
β(1− 2ε)|β|

117

Multiplying both sides by δ yields:

δ2 ≤
∑

β:|Âπ2(β)|≥δ

Â2
π2(β)

B̂2
β(1− 2ε)|β|

≤
∑

β

Â2
π2(β)

B̂2
β(1− 2ε)|β|

Now consider the following decoding algorithm: D(A) picks α ⊆ {1, . . . , k} with probability
Â2
α and a ∈ α at random. Similarly D(B) picks β ⊆ {1, . . . , t} with probability B̂2

β and

b ∈ β at random. Using this strategy and noting that ∃c : (1− 2ε)k ≤ c
k , c = O(1ε) we find:

Pr[D(A) = π(D(B))] ≥
∑

β

Â2
π2(β)

B̂2
β

1

|β|

≥ 1

c

∑

β

Â2
π2(β)

B̂2
β(1− 2ε)|β|

≥ δ2

c
= Θ(εδ2)

This probability does not depend on t or k, so that we can adjust the soundness parameter
of Raz’s verifier and not have a circular relationship of the variables.

118

Lecture 19

Circuit Lower Bounds for Parity
Using Polynomials

In this lecture, we will talk about circuit lower bounds and take our first step towards prov-
ing a result about the lower bound on the size of a constant depth circuit which computes
the XOR of n bits.

Before we talk about bounds on the size of a circuit, let us first clarify what we mean
by circuit depth and circuit size. The depth of a circuit is defined as the length of the
longest path from the input to output. The size of a circuit is the number of AND and
OR gates in the circuit.Note that for our purpose, we assume all the gates have unlimited
fan-in and fan-out. We define AC0 to be the class of decision problems solvable by circuits
of polynomial size and constant depth. We want to prove the result that PARITY is not
in AC0.

We will try to prove this result using two different techniques. In this class, we will talk
about a proof which uses polynomials; in the next class we will look at a different proof
which uses random restrictions.

19.1 Circuit Lower Bounds for PARITY

Before we go into our proof, let us first look at a circuit of constant depth d that computes
PARITY.

Theorem 80 If a circuit of size S and depth d computes PARITY then S ≥ 2Ω(n
1

d−1)

This bound of 2Ω(n
1

(d−1)) is actually tight, as the following example shows.
Consider the circuit C shown in Figure(19.1), which computes the PARITY of n vari-

ables. C comprises of a tree of XOR gates, each of which has fan-in n
1

d−1 ; the tree has a
depth of d− 1.

Now, since each XOR gate is a function of n
1

d−1 variables, it can be implemented by

a CNF or a DNF of size 2n
1

d−1
. Let us replace alternating layers of XOR gates in the

119

Figure 19.1: Circuit for Computing XOR of n variables; each small circuit in the tree

computes the XOR of k = n
1

d−1 variables

tree by CNF’s and DNF’s - for example we replace gates in the first layer by their CNF
implementation, gates in the second layer by their DNF implementation, and so on. This
gives us a circuit of depth 2(d − 1). Now we can use the associativity of OR to collapse
consecutive layers of OR gates into a single layer. The same thing can be done for AND to
get a circuit of depth d.

This gives us a circuit of depth d and size O(n2n
1

d−1
) which computes PARITY.

19.2 Proof of Circuit Lower Bounds for PARITY using Poly-

nomials

For our proof, we will utilise a property which is common to all circuits of small size and
constant depth, which PARITY does not have. The property is that circuits of small size
and constant depth can be represented by low degree polynomials, with high probability.
More formally, we show that if a function f : {0, 1}n → {0, 1} is computed by a circuit of size
s and depth d, then there exists a function g : {0, 1}n → < such that Prx[f(x) = g(x)] ≥ 3

4
and ĝα 6= 0 only for |α| ≤ O((logS)2d).

Then we will show that if a function g : {0, 1}n → < agrees with PARITY on more
than a fraction 3

4 of its inputs, then ĝα = 0 only for |α| = Ω(
√
n). That is, a function which

agrees with PARITY on a large fraction of its inputs, has to have high degree. From these
two results, it is easy to see that PARITY cannot be computed by circuits of constant
depth and small size.

Lemma 81 Suppose we can describe a distribution GOR over functions g : {0, 1}n → {0, 1}
such that

• for every g in GOR, ĝα 6= 0 only for |α| ≤ O
(
(log 1

ε)(logK)
)

120

• for every x ∈ {0, 1}n, Prg∼GOR [g(x) = x1 ∨ x2 ∨ · · · ∨ xk] ≥ 1 − ε. Here K is the
maximum fan-in of each gate.

Also suppose we can describe a such a distribution GAND for AND gates. Then, given a
circuit C of size S and depth d, we can find a polynomial h of degree at most O((logS)2d),
such that Prx[h(x) = C(x)] ≥ 3

4

Proof: The way we do this is as follows. For every gate in a circuit C, we pick indepen-
dently an approximating function gi with parameter ε = 1

4S , and replace the gate by gi.
Then, for a given input, probability that the new circuit computes C(x) correctly, that is,
the probability that the results of all the gates are correctly computed, is at least 3

4 . Let
Gi : {1,−1}n → {1,−1} be the Fourier transformed version of function gi, so that

gi(x1, · · · , xn) =
1

2
+

1

2
Gi(1− 2x1, 1− 2x2, · · · , 1− 2xn) (19.1)

Then Gi can be written as
Gi =

∑

α

ĝi,α
∏

j∈α
Xj (19.2)

where Xi = 1− 2xi. Then Gi has degree at most O((logS)2), as K, the fan-in of any gate,
is at most S. Therefore, if we expand out the expression for C(x), we will get a multilinear
polynomial of degree at most O((logS)2d), as C has depth d. 2

Lemma 82 Suppose there is a function g : {0, 1}n → < such that

• Prx[g(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn] ≥ 3
4 and

• ĝα = 0, for all sets α such that |α| > d.

Then d = Ω(
√
n)

Proof: Let G : {1,−1}n → {1,−1} be the Fourier transformed version of the function g.
That is,

G(x) = 1− 2g(
1

2
− 1

2
x1, · · · ,

1

2
− 1

2
xn) (19.3)

Then, Prx[G(X) =
∏n
i=1Xi] ≥ 3

4 , where Xi = 1− 2xi. Define A to be the set of values over
which g agrees with PARITY. In other words,

A = {X : G(X) =
n∏

i=1

Xi} (19.4)

Then |A| ≥ 3
42n, by our initial assumption. Now consider the set of all functions S = {f : A→ <}.

These form a vector space of dimension |A|. Any function f in this set can be written as

f(X) =
∑

α

f̂α
∏

i∈α
Xi (19.5)

121

Over A, G(X) =
∏n
i=1Xi. Therefore, for X ∈ A,

∏

i∈α
Xi = G(X)

∏

i/∈α
Xi (19.6)

By our initial assumption, G(X) is a polynomial of degree at most d. Therefore, for every
α, such that |α| ≥ n

2 , we can replace
∏

i∈αXi by a polynomial of degree less than or equal
to d+ n

2 . Every such function f which belong to S can be written as a polynomial of degree
at most d+ n

2 . Hence the set
{∏

i∈αXi

}

|α|≤d+n
2

forms a basis for the set S. As there must

be at least |A| such monomials, this means that

d+n
2∑

k=0

(nk) ≥ 3

4
2n (19.7)

This holds when d = Ω(
√
n). 2

Now we need to prove that we can indeed describe such distributions GOR and GAND

over functions gi for OR and AND.

19.3 Approximating OR

The following lemma says that we can approximately represent OR with a polynomial of
degree exponentially small in the the fan-in of the OR gate. We’ll use the notation that x
is a vector of k bits, xi is the ith bit of x, and 0 is the vector of zeros (of the appropriate
size based on context).

Lemma 83 For all k and ε, there exists a distribution G over functions g : {0, 1}k → R
such that

1. g is a degree O((log 1
ε)(log k)) polynomial, and

2. for all x ∈ {0, 1}k,
Pr
g∼G

[g(x) = x1 ∨ . . . ∨ xk] ≥ 1− ε. (19.8)

Proof Idea: We want a random polynomial p : {0, 1}k → R that computes OR. An
obvious choice is

pbad(x1, . . . , xk) = 1−
∏

i∈{1,...,k}
(1− xi) , (19.9)

which computes OR with no error. But it has degree k, whereas we’d like it to have
logarithmic degree. To accomplish this amazing feat, we’ll replace the tests of all k variables
with just a few tests of random batches of variables. This gives us a random polynomial
which computes OR with one-sided error: when x = 0, we’ll have p(x) = 0; and when some
xi = 1, we’ll almost always (over our choice of p) have p(x) = 1.

122

Proof: We pick a random collection C of subsets of the bits of x. (That is, for each S ∈ C
we have S ⊆ {1, . . . , k}). We’ll soon see how to pick C, but once the choice has been made,
we define our polynomial as

p(x1, . . . , xk) = 1−
∏

S∈C

(

1−
∑

i∈S
xi

)

. (19.10)

Why does p successfully approximate OR? First, suppose x1 ∨ . . . ∨ xk = 1. Then we
have x = 0, and:

p(0, . . . , 0) = 1−
∏

S∈C

(

1−
∑

i∈S
0

)

= 0. (19.11)

So, regardless of the distribution from which we pick C, we have

Pr
C

[p(0) = 0] = 1. (19.12)

Next, suppose x1 ∨ . . . ∨ xk = 1. We have p(x) = 1 iff the product term is zero. The
product term is zero iff the sum in some factor is 1. And that, in turn, happens iff there’s
some S ∈ C which includes exactly one xi which is 1. Formally, for any x ∈ {0, 1}k, we
want the following to be true with high probability.

∃S ∈ C. (|{i ∈ S : xi = 1}| = 1) (19.13)

Given that we don’t want C to be very large (so that the degree of the polynomial is
small), we’ll have to pick C very carefully. In order to accomplish this, we turn to the
Valiant-Vazirani reduction, which you may recall from Lecture 7:

Lemma 84 (Valiant-Vazirani) Let A ⊆ {1, . . . , k}, let a be such that 2a ≤ |A| ≤ 2a+1,
and let H be a family of pairwise independent hash functions of the form h : {1, . . . , k} →
{0, 1}a+2. Then if we pick h at random from H, there is a constant probability that there
is a unique element i ∈ A such that h(i) = 0. Precisely,

Pr
h∼H

[|{i ∈ A : h(i) = 0}| = 1] ≥ 1

8
(19.14)

With this as a guide, we’ll define our collection C in terms of pairwise independent hash
functions. Let t > 0 be a value that we will set later in terms of the approximation parameter
ε. Then we let C = {Sa,j}a∈{0,...,log k},j∈{1,...,t} where the sets Sa,j are defined as follows.

• For a ∈ {0, . . . , log k}:

– For j ∈ {1, . . . , t}:
∗ Pick random pairwise independent hash function ha,j : {1, . . . , k} → {0, 1}a+2

∗ Define Sa,j = h−1(0). That is, Sa,j = {i : h(i) = 0}.

123

Now consider any x 6= 0 which we’re feeding to our OR-polynomial p. Let A be the set of
bits of x which are 1, i.e., A = {i : xi = 1}, and let a be such that 2a ≤ |A| ≤ 2a+1. Then
we have a ∈ {0, . . . , log k}, so C includes t sets Sa,1, . . . , Sa,t. Consider any one such Sa,j .
By Valiant-Vazirani, we have

Pr
ha,j∼H

[|{i ∈ A : ha,j(i) = 0}| = 1] ≥ 1

8
(19.15)

which implies that

Pr
ha,j∼H

[|{i ∈ A : i ∈ Sa,j}| = 1] ≥ 1

8
(19.16)

so the probability that there is some j for which |Sa,j ∩ A| = 1 is at least 1 −
(
7
8

)t
, which

by the reasoning above tells us that

Pr
p

[p(x) = x1 ∨ . . . ∨ xk] ≥ 1−
(

7

8

)t

. (19.17)

Now, to get a success probability of 1−ε as required by the lemma, we just pick t = O(log 1
ε).

The degree of p will then be |C| = t(log k) = O((log 1
ε)(log k)), which satisfies the degree

requirement of the lemma. 2

Note that given this lemma, we can also approximate AND with an exponentially low
degree polynomial. Suppose we have some G which approximates OR within ε as above.
Then we can construct G′ which approximates AND by drawing g from G and returning g′

such that
g′(x1, . . . , xk) = 1− g(1− x1, . . . , 1− xk). (19.18)

Any such g′ has the same degree as g. Also, for a particular x ∈ {0, 1}k, g′ clearly computes
AND if g computes OR, which happens with probability at least 1− ε over our choice of g.

19.4 References

The proof of the Parity lower bound using polynomials is due to Razborov [Raz87] and
Smolensky [Smo87]. The original proof was different, and we will present it next.

124

Lecture 20

Lower Bound for Parity Using
Random Restrictions

In this lecture we give an alternate proof that parity /∈ AC0 using the technique of random
restrictions. This is the original method that was used to prove parity /∈ AC0.

20.1 Random Restrictions

A restriction fixes some inputs of a circuit to constant values, and leaves other inputs free.
More formally, a restriction is a function ρ : {1, . . . , n} → {0, 1, ∗}. We apply a restriction
ρ to a circuit C with n inputs to obtain a restricted circuit Cρ as follows:

• For each i ∈ {1, . . . , n}:

– If ρ(i) = 0, set the ith input of C to 0.

– If ρ(i) = 1, set the ith input of C to 1.

– If ρ(i) = ∗, leave the ith input of C as a free variable.

Now let’s see how restrictions are used to prove our main theorem:

Theorem 85 There does not exist a constant-depth, unbounded-fanin, polynomial-size cir-
cuit which computes the parity function of its inputs.

Proof Idea: We’ll consider only circuits which at the first level consist only of ORs, at the
second level consist only of ANDs, and continue alternating in this way. This is depicted in
Figure 20.1. (Any circuit can be coverted to this form with at most a factor of 2 increase
in the depth.)

The proof will be by contradiction. First, we show that parity circuits of depth 2 must
have exponential width (Lemma 86). Next, we suppose by way of contradiction that we
have an AC0 circuit C of some constant depth d which computes parity. We give a way of
squashing C down to depth d − 1 while still computing parity on many variables. We can
repeat the method d−2 times to obtain a parity circuit of depth 2 and subexponential size,
which contradicts Lemma 86.

125

x2

OROR OR

x1 x4

OR

x3

AND ANDAND

OR OR

...

Figure 20.1: A circuit with alternating levels of ANDs and ORs.

Restrictions enter in our method of circuit squashing. We apply a random restriction ρ1
to C’s inputs, obtaining Cρ1 . We prove that the top level OR gates of Cρ1 are likely to only
depend on a constant number of inputs, but a good number of variables still remain free
(Corollary 88). Cρ1 will compute parity (or the inverse of parity, which is just as good) on
those free variables. Then we show that after applying a second random restriction ρ2 and
obtaining Cρ1ρ2 , the second-level AND gates are also likely to depend on only a constant
number of inputs (Lemma 89). Now we flip the first two layers, which we can do with at
most an exponential size increase of those layers (Lemma 90), which is fine because the
size of both layers was made constant by the two rounds of restrictions. After the flip, the
second and third layers are both ORs, so we can collapse them both into a single layer,
obtaining a circuit of depth d− 1 that computes parity on many variables.

Statements and proofs of the lemmas mentioned above follow.

Lemma 86 If a DNF or a CNF computes parity of n variables, then:

1. Each term includes all n variables, and

2. There are at least 2n−1 terms.

Proof: We will prove the lemma for CNFs, which have OR gates at their top level and a
single AND of all the ORs at the second level. The proof for DNFs is quite similar.

For any CNF circuit C:

1. Each term includes all n variables: Suppose by way of contradiction that C has some
term t which does not depend on some variable xi. Then when all inputs to t are 0,
t outputs 0 and the single AND gate on the next level outputs 0, which is the output
of the whole circuit. Now flip the value of xi. The output of t is still 0, and thus
the output of C has not changed. But since we’ve only changed one variable, the
parity has flipped. Alas, we have a contradiction! So every term must depend on all
variables.

2. There are at least 2n−1 terms: To compute parity, C must output 0 on 2n−1 different
settings of the input variables. C outputs 0 only when one of the terms (OR gates)

126

outputs 0. But each OR gate outputs 0 on exactly one setting of the input variables.
Thus, C must have at least 2n−1 terms.

2

Lemma 87 Let ρ be a random restriction defined as

ρ(i) =







0 with probability 1
2 − 1√

n

1 with probability 1
2 − 1√

n

∗ with probability 2√
n

(20.1)

Then an OR or AND gate with n inputs restricted with ρ depends on at most c inputs with
probability at least 1− 1

nc/3
.

Proof Idea: We’ll break the proof into two cases. (1) Large OR gates will have some input
fixed at 1 w.h.p., and thus the entire gate can be replaced with a constant 1. Similarly, large
AND gates can be replaced with 0 w.h.p. (2) Small gates will w.h.p. be reduced enough to
depend on only c inputs.

Proof:

Case 1: Suppose the gate has at least c log n inputs before applying the restriction. Then:

Pr
ρ

[gate depends on ≤ c inputs] ≥ Pr
ρ

[gate becomes constant]

≥ Pr
ρ

[some input set to 1 (OR gate) or 0 (AND gate)]

≥ 1−
(

1

2
+

1√
n

)c logn

≥ 1−
(√

1

2

)c logn

(for large enough n)

= 1− 1

nc/2

≥ 1− 1

nc/3
.

Case 2: Suppose the gate has at most c logn inputs. Then:

Pr
ρ

[gate depends on ≤ c inputs] ≥ 1−
c logn
∑

t=c+1

(
c logn
t

)(
2√
n

)t

≥ 1− (c log n)c
(

1√
n

)c

≥ 1− 1

nc/3
(for large enough n).

2

127

Corollary 88 If a circuit has nk gates, then there is a restriction with
√
n
2 free variables

such that all top-level gates have fan-in at most 4k.

Proof: We apply Lemma 87 with c = 4k, obtaining a circuit Cρ such that

Pr [some gate of Cρ depends on > 4k variables] < nk
1

n4k/3
= n−1/3 ¿ 1 (20.2)

and

Pr

[

Cρ depends on <

√
n

2
variables

]

≈ 2O(−√n) ¿ 1 (20.3)

which follows from a Chernoff bound. This guarantees the existance of a circuit which
satisfies the corollary. 2

Lemma 89 Given any c-CNF C (in which each OR depends on at most c variables) and
any k > 0, there is a constant b(c, k) such that after applying the random restriction ρ of
Lemma 87 to C, with probability more than 1− 1

nk
, Cρ depends on at most b(c, k) variables.

Proof: The proof is by induction on c.

Base case: c = 1. The OR gates each only have 1 input, so we can replace the entire CNF
with a single AND gate. Then by Lemma 87, Lemma 89 is satisfied when b(1, k) = 3k.

Inductive case: Suppose the lemma holds for c − 1; we’ll prove that it’s true for c. Let
M be a maximal set of disjoint clauses. That is, the clauses in M share no variables
(disjointedness), and every clause not in M shares a variable with some clause in M
(maximality). (You can think of this as picking a maximal matching in the hypergraph
whose nodes are the circuit’s variables and whose hyperedges are the sets of variables
used by each clause.) One of two cases is true:

Case 1: |M | ≥ 2ck log n. Then:

Pr
ρ

[C depends on ≤ b(c, k) inputs] ≥ Pr
ρ

[C becomes constant]

≥ Pr
ρ

[some OR gate unsatisfied]

≥ 1−
(

1−
(

1

2
− 1√

n

)c)|M |

≈ 1− e− 1
2c
|M |

> 1− 1

nk
.

Note that in the third inequality we use the fact that the clauses of M are
independent: the probability that a particular OR gate in M is unsatisfied is
independent of the probability that any other OR gate in M is unsatisfied.

128

Case 2: |M | ≤ 2ck logn. Let V be the set of variables in the clauses of M , so
|V | ≤ c|M | = c2ck log n. We’ll first show that the restriction reduces V to
constant size:

Pr
ρ

[≤ i variables of V stay free] ≥ 1−
(

2ck log n
i

)(
1√
n

)i

≥ 1− 1

ni/3
(for large enough n).

So to get the probability greater than 1 − 1
nk

as required by the lemma, we
choose i = 4k. But we’re not yet done: we’ve shown that the gates of M shrink
to constant size, but we have said nothing about the gates not in M . To do that,
recall that every clause not in M shares a variable with a clause in M , so if we
restrict the remaining 4k free inputs of M , obtaining C ′ρ, then every clause in
C ′ρ will have some input fixed. C ′ρ is thus a (c − 1)-CNF and we can apply the
inductive hypothesis: C ′ρ depends on at most b(c−1, k+1) variables. Now, there

are 24k ways to set the 4k variables, so Cρ depends on at most

b(c, k) = 4k + 24kb(c− 1, k + 1) (20.4)

variables.

2

Lemma 90 (The Switching Lemma) A CNF or DNF of c variables can be represented
as a DNF or a CNF, respectively, of size at most 2c.

We omit the proof of this lemma, but note that we can actually prove a stronger fact: any
function of c variables can be written as a DNF or as a CNF of size at most 2c.

20.2 H̊astad’s Result

This section is devoted to a sketch of H̊astad’s tight result for the complexity of parity with
bounded depth circuits. We begin by stating the key theorem:

Theorem 91 (Switching Lemma) Suppose f is a k-CNF1 over the variables x1, . . . , xn.
Pick at random a restriction that leaves a fraction p of the variables unfixed. For each of
the n(1− p) variables that are fixed, independently hardwire 0 or 1 as that variable’s value.
Then for every t,

Pr[after the restriction f can be expressed as a t-CNF and a t-DNF] ≥ 1− (7pk)t.

The theorem states that, after making the specified sort of restriction, we get a formula
that can be expressed as a simpler DNF (if the original f was a CNF) or a simpler CNF (if
the original f was a DNF) with exponentially high probability.

We state one more useful result before getting on to the analysis:
1We can take f to be a k-DNF as well by taking complements.

129

.

.

.

.

.

.

.

.

.

.

.

.

AND

OR

. . .}k

Figure 20.2: The first two levels of the circuit C. By the Switching Lemma, we can transform
the AND gates of the top level to OR gates with high probability by making a random
restriction.

Lemma 92 If f is a k-CNF (or a k-DNF) for x1⊕x2⊕· · ·⊕xm, then every term has size
n.

Now let C be a depth d circuit for parity of size S. Each level of C will consist entirely
of AND gates or of OR gates, starting with AND gates at the top level. Each of the AND
gates at the top level is a 1-CNF, each clause being a single variable. We can apply the
Switching Lemma with t = logS and p = 1/14 so that each of these top-level gates becomes
a logS-DNF with probability at least 1− 1/S (see Figure 1).

Since the AND gates of the top level have been switched to ORs, we can collapse the
first two levels into one level of ORs to get a circuit that computes the parity of n/14 inputs
such that the top gates have fan-in at most logS (see Figure 2).

Next we apply the Switching Lemma to the (new) top level of gates, each of which is a
logS-DNF (so k = logS), with p = 1/(14 logS) and t = logS (see Figure 3). Thus each of
these OR gates can be computed by a logS-CNF with probability at least

1−
(

7
logS

14 logS

)logS

= 1−
(

7
1

14

)log S

= 1− 1

2logS

= 1− 1

S
,

and after collapsing the two consecutive levels of ANDs, we get a depth d − 1 circuit that
computes the parity of n/(14(14 log s)) inputs such that the top gates have fan-in at most
logS.

Now we continue applying this procedure recursively until we get a depth 2 circuit that
computes the parity of n/(14(14 logS)d−2) inputs such that the top gates have fan-in at
most logS. By the lemma, the fan-in at the top must be at least the number of variables,

130

.

.

.

.

.

.

.

.

.

.

.

.

OR

. . . }Collapse
OR

}log S

Figure 20.3: Applying the Switching Lemma to the AND gates transforms them to OR
gates, so we can collapse the first two levels to form one level of ORs.

.

.

.

.

.

.

.

.

.

.

.

.

. . .OR

}log S

AND

Figure 20.4: We use the Switching Lemma to transform the (new) first level of ORs to
ANDs, and then we collapse the two consecutive levels of ANDs to one new level.

131

so

logS ≥ n

14(14 logS)d−2

or

S ≥ 2
1
14
n1/d−1

.

20.3 References

The idea of using random restrictions, as well as the first proof that Parity is in AC0, is
due to Furst, Saxe and Sipser [FSS84]. The lower bound was improved to exponential by
Yao [Yao85], and the optimal lower bound is due to H̊astad [H̊as86].

132

Lecture 21

Proof Complexity

In this lecture and in the next one we are going to discuss proof complexity, which is related
to the question of NP vs. coNP in much the same way that circuit complexity is related
to the question of P vs. NP.

Recall that NP = coNP if and only if there is some coNP-complete problem—the
complement of an NP-complete problem—that is in NP. In particular, equality will hold
if UNSAT is in NP, where UNSAT is the problem of determining if a Boolean formula
ϕ is a contradiction—that is, if ϕ(x1, . . . , xn) = 0 for all truth assignments to the variables
x1, . . . , xn of ϕ. If UNSAT is in NP, then we can make the following precise statements:

1. There is a polynomial-time verifier V and a polynomial bound p such that for all
unsatisfiable formulas ϕ, there exists a proof π, with |π| ≤ p(|ϕ|), such that V (ϕ, π)
accepts, and

2. For all satisfiable formulas ϕ and all π, V (ϕ, π) rejects (even if the length of π is not
bounded by some polynomial in |ϕ|).

These statements follow immediately from the definition of NP.
For the purposes of studying proof complexity, we will consider a situation in which the

requirement of a polynomial bound p in (1) is discarded. Thus, we say that V is a sound
and complete proof system for UNSAT if

1. (Soundness) If ϕ is a satisfiable formula, then for all π, V (ϕ, π) rejects,

2. (Completeness) If ϕ is an unsatisfiable formula, then there is a π such that V (ϕ, π)
accepts, and

3. (Efficiency) V runs in polynomial time.

We can now state a necessary and sufficient condition for NP to be different from coNP
in terms of these sound and complete proof systems: NP 6= coNP if and only if for every
sound and complete proof system for UNSAT , there is an infinite sequence of unsatisfiable
formulas whose shortest proof sizes grow superpolynomially.

What we are going to do now is to fix a natural proof system for UNSAT and then
attempt to show unconditionally that there are formulas requiring superpolynomial proofs.
This general approach can be likened to the approach physicists take when investigating

133

physical theory: a physical theory offers some predictions about phenomena that can be
observed in nature, and we check to see that those predictions are actually correct. If they
are, we take that to be evidence in support of the theory. In this case, the “theory” is that
NP 6= coNP, and this theory predicts that for every proof system for UNSAT , there will
be formulas requiring proofs of superpolynomial length.

Notice that any algorithm A for SAT, whether it runs in polynomial time or not, induces
a proof system for UNSAT . The proof that ϕ is unsatisfiable is a description of a rejecting
computation of A on input ϕ. Hence a lower bound on the proof length of a proof in this
system automatically gives a lower bound on the running time of A.

21.1 Resolution Proof System

The proof system for UNSAT that we will investigate is Resolution. Given a CNF formula
ϕ = C1 ∧ C2 . . . ∧ Cm, where each Ci is a clause, a proof of the unsatisfiability of ϕ (also
called a “refutation” of ϕ) is a sequence of clauses (D1, D2, . . . , Dt) such that

1. Each Di is either

(a) A clause of the original formula ϕ (i.e., Cj for some j between 1 and m) or

(b) A clause obtained from Dj and Dh, j < i and h < i, using the Resolution rule

x ∨D, x ∨D′
D ∨D′ , and

2. Dt is 0 (the false empty clause).

As an example of how Resolution works, consider the formula

ϕ = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3;

we can construct a proof as follows (see Figure 4):

1. Let D1 = x1, D2 = x1 ∨ x2, D3 = x2 ∨ x3, and D4 = x3, so the first four clauses in
the refutation are just the original clauses of ϕ.

2. From D1 = x1 and D2 = x1 ∨ x2, using the resolution rule we can deduce D5 = x2.

3. From D3 = x2 ∨ x3 and D5 = x2, using the resolution rule we can deduce D6 = x3.

4. From D4 = x3 and D6 = x3, using the resolution rule we deduce the empty clause
D7 = 0.

The proof that ϕ is unsatisfiable is then just the sequence of clauses (D1, D2, . . . , D7). The
reason that this is a proof is that the Resolution rule is sound: any assignment to the
variables of ϕ that satisfies ϕ will also satisfy any clauses derived using the Resolution rule.
Thus, if we derive a clause that cannot be satisfied by any assignment, it follows that ϕ can
likewise not be satisfied by any assignment to its variables. This reasoning shows that the
proof system is sound.

134

X
1

X
32

X
2

XX
1

2
X

X
3

X
3

0

Figure 21.1: A tree-like Resolution proof.

In this particular example, the proof can be pictured as a tree (again see Figure 4), so
the Resolution proof for ϕ is called tree-like. In general, a proof can be represented as a
directed acyclic graph, with the sequence (D1, D2, . . . , Dt) being a topological sort of that
graph.

Now we want to show that Resolution is complete (i.e., every unsatisfiable formula has
a refutation). In doing so, it will be useful to allow the use of the weakening rule

D

D ∨ x.

We lose no generality in adding the weakening rule because, as it turns out, any proof that
uses the rule can be converted to a proof that doesn’t without adding to the proof’s length:

Lemma 93 If there is a proof for ϕ of length1 k using the Resolution and weakening rules,
then there is a proof for ϕ of length at most k using the Resolution rule only.

We will not prove this result here.
Now let ϕ = C1 ∧ C2 ∧ . . . ∧ Cm be an unsatisfiable formula over the n variables

x1, x2, . . . , xn. Using the weakening rule, construct all clauses of length n that can be
obtained from some Ci, i = 1, 2, . . . ,m, by adding literals. We claim that we can derive all
length n clauses this way.

To see this, suppose that the clause

(x1 = a1) ∨ (x2 = a2) ∨ . . . ∨ (xn = an) (∗)
1The number of clauses in the proof

135

cannot be derived using weakening. Clearly the assignment

x1 = 1− a1
x2 = 1− a2
. . .

xn = 1− an







(∗∗)

contradicts (∗). Now take a clause Ci ∈ ϕ over the variables xi1 , xi2 , . . . , xil , where each
xij is an xk for some k. A clause is contradicted by exactly one assignment, so if Ci is
contradicted by the restriction of (∗∗) to xi1 , xi2 , . . . , xil , it follows that Ci is a subset of
(∗), but this is impossible since we assumed that (∗) cannot be derived from any Cj by
adding literals. Hence (∗∗) satisfies every clause of ϕ, but this is a contradiction since we
assumed that ϕ is unsatisfiable. (In other words, a length n clause that is not derivable
using weakening describes a satisfying assignment for ϕ).

Having derived all length n clauses, we can use the Resolution rule to derive all length
n−1 clauses. Continuing this process, we eventually derive the clauses x and x for a variable
x ∈ {x1, x2, . . . , xn}, and one more application of the Resolution rule gives 0, showing that
ϕ has a refutation and that the proof system is indeed complete.

21.2 Width of a Resolution Proof

If (D1, D2, . . . , Dt) is a Resolution proof for ϕ, then t is the length2 of the proof and the
size of the shortest clause in the derivation is the width of ϕ (we only count clauses that are
derived—not clauses that are in ϕ). It turns out to be easier to prove width lower bounds
than length lower bounds directly. That this approach can still lead to strong lower bounds
for length is the content of the following theorem:

Theorem 94 Fix an unsatisfiable k-CNF formula ϕ over n variables. Let w be the minimal
width of a proof for ϕ, let LT be the length of the shortest tree-like Resolution proof, and let
L be the length of the shortest general Resolution proof. Then

w ≤ logLT + k

w ≤ O(
√

n logL) + k.

We first state a lemma that will be useful in the proof of the theorem.

Lemma 95 Let ϕ be as above, x a variable in ϕ, and a ∈ {0, 1}. Suppose ϕx=a is a k-CNF,
the width of ϕx=1−a is at most d− 1, and the width of ϕx=a is at most d. The ϕ has width
no greater than max d, k.

We will prove the lemma and the second part of this theorem in the next lecture. For
now, we focus on the first part of the theorem.
Proof: The strategy of the proof is to show that if ϕ has a short proof, then it has a proof
of small width. We will show this by induction on n, the number of variables, and b, where

2We will also refer to the length of a proof as its size since the length is the number of nodes in the proof
DAG.

136

XX

0

Figure 21.2: The tree-like Resolution proof of ϕ consists of two subtrees which are deriva-
tions of x and x. Since the size of the proof is at most 2b, one of these subtrees must have
size at most 2b−1.

b is an integer such that ϕ has a tree-like proof of size bounded above by 2b. The claim is
that if ϕ has a tree-like proof of size at most 2b, then it has a proof of width at most b+ k.

If b = 0, then the proof that ϕ is unsatisfiable is (0), in which case the claim is obvious.
If n = 1, then the only possible literals are x and x, so any proof will have width 0 (or

1, depending on the conventions one chooses). Again the claim is immediate.
Now suppose ϕ has a tree-like proof of size 2b. The last step of the proof must by a

derivation of 0 from x and x, where x is a variable in ϕ (see Figure 5). Since the total size
of the proof is 2b, the tree-like derivation of x or the tree-like derivation of x must have size
no greater than 2b−1; without loss of generality, assume that the derivation of x is the small
one.

Suppose that we substitute x = 0 into all the clauses of ϕ and all the clauses we derived
from ϕ. The derivation is still correct since the Resolution rule still applies after we make
this substitution, so the tree-like derivation of x becomes a derivation of 0, i.e. a proof for
ϕx=0. Hence ϕx=0 has a tree-like proof of size at most 2b−1, and we can apply the inductive
hypothesis to conclude that there is also a proof of ϕx=0 of width at most b+ k − 1.

Next make the substitution x = 1 into all the clauses of ϕ and all the clauses derived
from ϕ. Then, as above, we get a proof of ϕx=1 of size at most 2b. But since there is one
less variable in ϕx=1, by induction on n there is a proof for ϕx=1 of width at most b+ k.

The desired conclusion now follows from the lemma. 2

137

21.3 References

The first superpolynomial lower bounds for resolution proof length were proved by Tseitin [Tse70].
The first exponential lower bounds are due to Haken [Hak85]. The notion of width is due
to Ben-Sasson and Wigderson [BSW01].

138

Lecture 22

Lower Bounds on Resolution Proof
Length

22.1 Width and Proof Complexity

22.1.1 The Main Theorem

In general, a derivation (ϕ→ D) can have different proofs and by its width w(ϕ→ D),
we mean the width of its minimum-width proof. The following theorem is about w(ϕ→0)
(written sometimes as simply w(ϕ)), where 0 is the empty false clause and ϕ is unsatisfiable.
A proof that derives (ϕ→0) is called a refutation of ϕ.

Theorem 96 (Main Width-Length Theorem) Let ϕ be a unsatisfiable k-CNF formula on n
variables. Let LT and L be the length of the shortest tree-like and shortest general refutation
of ϕ respectively. Then, the width of the minimum-width refutation of ϕ, w(ϕ) is related to
LT and L as:

w(ϕ) ≤ log LT + k (22.1)

w(ϕ) ≤ O(
√

n log L) + k (22.2)

This theorem is an attempt at simplifying the study of proof complexity [BSW01].
Instead of working directly with LT and L, we work on proving linear lower bounds on
w(ϕ) to get exponential lower bounds on LT and L. That is, if w(ϕ) = Ω(n) and k = o(n),
then by Relations (22.1) and (22.2), LT and L = 2Ω(n). If we replace n with nε, we can’t
say anything about L using the sub-linear lower bound on w(ϕ), but we can still get a
sub-exponential lower bound on LT .

We proved Relation (22.1) last time, using a simple induction argument on the structure
of the tree-like refutation. We can’t mimic that proof for Relation (22.2) though, since a
single clause in a general refutation can be used later in more than one derivation, leading
to a dag structure. We prove Relation (22.2) using the following technical lemma.

139

Lemma 97 Let πd be the set of clauses of size strictly greater than d in a general refutation
π, of a unsatisfiable k-CNF formula ϕ on n variables. If |πd| < (1 − d

2n)−b for some
parameter b, then the width of π is atmost d+ b+ k.

The clauses in πd are in a sense the problematic clauses in π, but if there are not too
many of them, we can safely bound the width of π. This lemma is true for any value of d
and the proof of Relation (22.2) uses the value of d that optimizes this bound.

Proof: (of Relation (22.2) of Width-Length Theorem) Let π be the shortest general refu-
tation of ϕ with length |π| = L. We obtain the result by using Lemma 97 on the trivial
bound |πd| < L.

w(ϕ) ≤ w(π)

≤ d+ b+ k (where b is from, L = (1− d
2n)−b)

= d+ log 1

1− d
2n

L+ k

≤ d+ log1+ d
2n
L+ k (using, 1

1−ε ≈ 1+ε)

≤ d+O(2nd log L) + k (using, log1+εx ≈ 1
ε log x)

= d+O(nd log L) + k

Therefore, when d = n
d log L (i.e., d =

√
n log L) in the relation above, we get the desired

upper bound on w(ϕ). 2

22.1.2 Proof of the technical lemmas

In this section, we prove two technical lemmas used in the proof of Width-Length theorem.
Lemma 98 was used in proving Relation (22.1) last time and it will also be used in the
proof of Lemma 97 this time. We need more notations before proceeding. For a variable
x in ϕ, let x1 and x0 be aliases for the literals x and x respectively. Also, let ϕx=a be
the restriction of ϕ to x= a, for a ∈ {0, 1}. That is, ϕx=a is the set of clauses obtained
from ϕ after removing all clauses that have xa in them and removing x1−a from all clauses
that have this literal. The restriction of a clause D to x=a, denoted by Dx=a, is obtained
similarly.

Lemma 98 If for a ∈ {0, 1}, ϕx=a is a k-CNF formula,

w(ϕx=1−a) ≤ d− 1 and w(ϕx=a) ≤ d,

then w(ϕ) ≤ max(d, k).
Proof: We will first prove the claim: If w(ϕx=1−a) ≤ d−1, then w(ϕ→xa) ≤ d. We assume
a= 1 for notational ease (the proof for general a extends easily). Let π be a refutation of
ϕx=0 with width atmost d−1 and let φ denote the set of clauses in ϕ that have the literal x
in them. Then φ′= φx=0 ∩ π denotes the restricted clauses of φ that were used in the proof
π. Obtain a new proof π′ by copying all clauses in π, and adding x back to the clauses in φ′

and its subsequent derivations (to preserve validity). The new proof π′ derives x directly if
φ′ was not an empty set or indirectly via a weakening rule from the final 0 clause otherwise.
Thus, π′ is a valid proof of (ϕ→x) with width atmost w(π) + 1 = d.

140

 ϕ

(x added to some clauses)
 x=0

 ϕcopied from

width k

 width d

 width d

x=1
 ϕ

 with no x in themϕ Clauses in

0

 x

Figure 22.1: Composing (ϕ→x) with (ϕx=1→0), to obtain a refutation for ϕ.

Now we turn to the proof of the lemma, again assuming a=1. We use the claim above
to derive (ϕ→x). We then resolve this derived x with all clauses of ϕ that doesn’t contain
x, to obtain ϕx=1. This is finally fed into the refutation of ϕx=1. See Figure 22.1 for a
depiction of this composition. Since ϕx=1 is a k-CNF and the width of both refutations
used in the composition is atmost d, we get a refutation of ϕ with width atmost max(d, k).
2

We now give the proof of Lemma 97, which was used in proving Relation (22.2) of
Width-Length theorem.

Proof: (of Lemma 97) The proof is by induction on b and n. When b = 0, |πd| < 1 and
the lemma is trivially true for any value of n. Similarly for n = 1, the lemma is trivially
true for any value of b, as there are only two literals in the formula. For the induction step,
we need a literal that hits many clauses in πd and we will indeed have such a literal by the
Pigeon Hole Principle (on viewing the 2n literals as holes and the sum-total of the sizes
of all clauses in πd as the number of pigeons). Specifically, there must be a literal, say x
wlog, that occurs in atleast d

2n |πd| clauses in πd (another way to look at this result is to
pick one out of the 2n literals in random and see the expected number of clauses in πd that
this literal hits).

Using this x, we obtain valid refutations of ϕx=0 and ϕx=1 by restricting π to x = 0 and
x = 1. The induction step then follows from applying Lemma 98 on these new refutations.
By induction on n, we already have w(ϕx=0) ≤ b + d + k. So, we just need to prove that
w(ϕx=1) ≤ b+d+k−1. Here, we are rescued by the fact that x appears in many clauses in
πd and hence the set of clauses that are still wider than d in the restricted refutation ϕx=1

141

i
C

C

C 1

 p

 q

C
 m

x

x

x

x

x 1

n

k

j

Figure 22.2: Graph Gϕ associated with a formula ϕ. Clause Cp could be xi ∨ xj ∨ xk and
Cq could be xi ∨ xj ∨ xk.

(call this set π′d) is small enough:

∣
∣π′d
∣
∣ ≤ (1− d

2n) |πd|
< (1− d

2n)−(b−1) (substituting for πd)

Since the parameter is now (b−1), w(ϕx=1) ≤ b−1+d+k by induction on b and we are done
with the proof. 2

22.2 Width Lower Bounds

22.2.1 The Setting

We establish lower bounds on width by relating it to some natural combinatorial property.
In our case, we will use the expansion property of the bipartite graph associated with a
CNF formula. We first define this expansion property and state the main theorem relating
width and expansion. Next we use this theorem to show that random k-CNFs require
exponential-length refutations (whp, due to their expansion properties).

Definition 29 (Graph associated with a formula) Let ϕ be a CNF formula on m clauses
C1, C2, . . . , Cm and n variables x1, x2, . . . , xn. The graph associated with ϕ (see Figure 22.2)
is the undirected bipartite graph Gϕ = (L,R,E), defined by

L = {x1, x2, . . . , xn} ,
R = {C1, C2, . . . , Cm} and
E = {(xi, Cj) | clause Cjcontains one of the literals xior xi} .

142

Definition 30 (Bipartite Expansion) A CNF formula ϕ on m clauses C1, C2, . . . , Cm is
(r, c)-expanding if and only if

∀S ⊆ {C1, C2, . . . , Cm} and |S| ≤ r, |N(S)| ≥ (1 + c) r

where N(S) refers to the neighbourhood of S in Gϕ.

Theorem 99 (Main Width-LB (LowerBound) Theorem) For positive r and c, if ϕ is (r,c)-
expanding and unsatisfiable, then

w(ϕ) ≥ rc

2
.

The proof of this theorem is quite interesting and is given in the next two sections.
The application of this theorem lies in the context of Width-Length theorem (Theorem 96),
since a linear lower bound on rc is now enough to show a exponential lower bound on the
length of any refutation of ϕ. Infact, the next theorem gives such a lower bound for random
k-CNFs.

Theorem 100 Let ϕ be a random k-CNF formula on n variables and ∆n clauses, con-
structed by picking each clause with k variables independently at random, from all possible
(
n
k

)
2k clauses with repetition. Then, whp ϕ is

(
n

∆
1

k−2+ε
, ε
)

-expanding, where the clause

density ∆ and the parameter ε with 0 ≤ ε ≤ 1
2 are constants.

The proof of this theorem follows from counting arguments and is left as an exercise. For
a specific value of ε, say 1

2 , we see that random k-CNFs are (Ω(n), 12)-expanding and hence
by Width-LB and Width-Length theorem, they require exponential-length refutations whp
(note that they are also unsatisfiable whp for proper choice of ∆ and k).

22.2.2 Matching and Satisfiability

This section prepares us for the proof of Width-LB theorem. Consider a subformula S of ϕ.
If we have a matching of S in Gϕ, then we can satisfy S by assigning proper truth values
to the unique non-conflicting variable that each of its clauses is matched to. This simple
observation along with Hall’s Matching theorem, leads to an interesting result called the
Tarsi’s theorem. We look at Hall’s theorem first.

Theorem 101 (Hall’s Matching Theorem) For a bipartite graph G = (L,R,E), there exists
a matching of vertices R′ ⊆ R, if and only if

∀R′′ ⊆ R′,
∣
∣N(R′′)

∣
∣ ≥

∣
∣R′′
∣
∣

where N(R′′) refers to the neighbourhood of R′′ in G.
If there is a matching of vertices in R′, then the condition in the theorem is clearly

true. But the theorem’s strength lies in the sufficiency of the condition, inspite of possible
overlaps between the neighbourhood of different R′′s. Sufficiency of the condition leads to
the following two corollaries of Hall’s theorem. The first corollary follows from the absence
of a matching (in Gϕ) of the entire formula ϕ. The second one follows from the presence of
a matching (in Gϕ) of a subformula of size atmost r (by virtue of ϕ’s bipartite expansion
property).

143

N(S’)−N(S)

n

1x

x

C 1

C
 m

S

S’

N(S)

Figure 22.3: S ′ is an arbitrary subset of {C1, C2, . . . , Cm}−S in the proof of Tarsi’s theorem.
|S′| < |N(S′)−N(S)|, because otherwise we could add S ′ to the already maximal S,
resulting in a contradiction.

Corollary 102 If ϕ is unsatisfiable, then there exists a subset S of the clauses of ϕ for
which |S| > |N(S)|.

Corollary 103 For a positive r and c, if ϕ is (r, c)-expanding, then every subformula of ϕ
having atmost r clauses is satisfiable.

We now present Tarsi’s theorem and its corollary, which will be used in the proof of
Width-LB theorem in the next section.

Theorem 104 (Tarsi’s theorem) For a minimally unsatisfiable CNF formula ϕ on m
clauses and n variables,

m > n.

(Note that minimal unsatisfiability refers to minimality w.r.t inclusion of clauses. That is,
if we we take away any clause from ϕ, it becomes satisfiable).
Proof: Since ϕ is a unsatisfiable formula (on clauses C1, C2, . . . , Cm and variables x1, . . . , xn),
by Corollary 102 of Hall’s theorem, we have a subset of clauses S for which |S| > |N(S)|.
Let’s make sure that S is the maximal such set. If S is the entire formula, we are done
with the proof as |S| = m and |N(S)| = n. So, let’s assume otherwise (i.e., |S| < m)
and let S′ be an arbitrary subset of {C1, C2, . . . , Cm} − S. By maximality of S, we have
|S′| < |N(S′)−N(S)| (see Figure 22.3). By Hall’s theorem, this result basically translates
to a matching in Gϕ (and hence satisfiability), of all the clauses in {C1, C2, . . . , Cm} − S
using only the variables in {x1, . . . , xn} −N(S). Since ϕ is minimally unsatisfiable, S can
also be satisfied (ofcourse using only the variables in N(S)), leading to the satisfiability of
the entire formula ϕ. The only way to resolve this contradiction requires S to be the entire
formula, the case that we have already proved. 2

144

Corollary 105 If a CNF formula ϕ on m clauses and n variables, minimally implies a
clause D of size k, then

m > n− k or equivalently, k > n−m.

(Note that ”minimally implies” again refers to minimality w.r.t inclusion of clauses. That
is, D can be derived from ϕ but not from any subformula of ϕ).
Proof: Recall that x1 and x0 are aliases for x and x respectively. If D is (xa1

1 ∨ . . . ∨ xakk),
the unique assignment that contradicts D is then (x1=1−a1, . . . , xk=1−ak). Restricting
ϕ to this assignment should yield a unsatisfiable formula ϕ(x1=1−a1,...,xk=1−ak) on (n − k)
variables and atmost m clauses. It is also minimally unsatisfiable because ϕ minimally
implied D in the first place. We obtain the result by direct application of Tarsi’s theorem.
2

22.2.3 Putting them together

Equipped with the tools of last section, we are ready for the proof of Width-LB theorem
(Theorem 99). Intuitively, ϕ can’t be refuted using only r of its clauses and we should be
able to find a clause that can be derived from a ”fairly big” but not ”too big” subformula
of ϕ. The proof follows from arguing about the size of such a clause in the minimum-width
refutation.

Proof: (of Width-LB Theorem) Let π be the minimum-width refutation of ϕ, a (r, c)-
expanding formula on m clauses. Define a measure µ (a number between 1 and m) for all
clauses D ∈ π as:

µ(D) = | smallest subformula of ϕ that minimally implies D | .

This measure has the following easily verifiable properties.

1. For any clause C in π that is also in ϕ, µ(C) = 1.

2. For the final 0 clause in π, µ(0) ≥ r. (from Corollary 103 of Hall’s theorem).

3. For a clause D derived from D′ and D′′ in π, µ(D) ≤ µ(D′) + µ(D′′). In other words,
µ is a sub-additive measure.

The above properties suggest that there exists a clause in π (say D∗), whose measure is
such that r/2 ≤ µ(D∗) ≤ r. To see this, start from the final 0 clause and pick the higher
measure clause of the two clauses from which it is derived. The measure of the picked clause
is atleast r/2 and if it is also atmost r stop; Otherwise continue this process recursively.
Since µ(C) = 1 for a clause C in ϕ, we will ultimately succeed due to sub-additivity of the
measure.

Now, let S be the smallest subformula of ϕ that minimally implies D∗. Then using the
fact that r/2 ≤ |S| ≤ r and the corollary of Tarsi’s theorem, we get: (note how we use the

145

fact that S is ”fairly big” but not ”too big”)

w(ϕ) ≥ Size of D∗

≥ |N(S)| − |S| (by Corollary 105 of Tarsi’s theorem)

≥ (1 + c) |S| − |S| (by expansion property of ϕ, since |S| ≤ r)
= c |S|
≥ rc/2.

2

146

Exercises

1. Prove Theorem 100 on the expansion property of random k-CNFs.

2. Show that Relation (22.1) of Width-Length theorem (proved last time) and Lemma
97, can be proven by induction on n alone. (The current proofs use induction on two
variables).

3. Provide a family of examples, for which the upper bound on w(ϕ) in Lemma 98
becomes tight. (Note that a tighter bound is min(d+1,max(d, k)) because there is a
composition slightly different from the one in Figure 22.1, that yields a bound of d+1
on w(ϕ)).

22.3 References

All the results in this lecture are due to Ben-Sasson and Wigderson [BSW01].

147

Lecture 23

Pseudorandomness and
Derandomization

These notes follow quite literally the notes that I wrote for the PCMI school on computational
complexity in Summer 2000. There is some redundancy between these notes and the content
of past lectures.

23.1 Probabilistic Algorithms versus Deterministic Algorithms

A probabilistic algorithm A(·, ·) is an algorithm that takes two inputs x and r, where x is an
instance of some problem that we want to solve, and r is the output of a random source. A
random source is an idealized device that outputs a sequence of bits that are uniformly and
independently distributed. For example the random source could be a device that tosses
coins, observes the outcome, and outputs it. A probabilistic algorithm A is good if it is
efficient and if, say, for every x,

Prr[A(x, r) = right answer for x] ≥ 3

4

We will typically restrict to the case where A solves a decision problem (e.g. it tests
whether two read-once branching programs are equivalent). In this case we say that a
language L is in BPP if there is a polynomial time algorithm A(·, ·) (polynomial in the
length of the first input) such that for every x

Prr[A(x, r) = χL(x)] ≥ 3

4

or, said another way,

x ∈ L⇒ Prr[A(x, r) = 1] ≥ 3

4

and

x 6∈ L⇒ Prr[A(x, r) = 1] ≤ 1

4
.

The choice of the constant 3/4 is clearly quite arbitrary. For any constant 1/2 < p < 1, if we
had defined BPP by requiring the probabilistic algorithm to be correct with probability st

148

least p, we would have given an equivalent definition. In fact, for any polynomial p, it would
have been equivalent to define BPP by asking the algorithm to be correct with probability
at least 1/2+1/p(n), where n is the size of the input, and it would have also been equivalent
if we had asked the algorithm to be correct with probability at least 1−1/2p(n). That is, for
any two polynomials p and q, if for a decision problem L we have a probabilistic polynomial
time A that solves L on every input of length n with probability at least 1/2 + 1/p(n), then
there is another probabilistic algorithm A′, still running in polynomial time, that solves L
on every input of length n with probability at least 1− 2−q(n).

For quite a few interesting problems, the only known polynomial time algorithms are
probabilistic. A well-known example is the problem of testing whether two multivariate low-
degree polynomials given in an implicit representation are equivalent. Another example is
the problem of extracting “square roots” modulo a prime, i.e. to find solutions, if they exist,
to equations of the form x2 = a (mod p) where p and a are given, and p is prime. More
generally, there are probabilistic polynomial time algorithms to find roots of polynomials
modulo a prime. There is no known deterministic polynomial time algorithm for any of the
above problems.

It is not clear whether the existence of such probabilistic algorithms suggests that prob-
abilistic algorithms are inherently more powerful than deterministic ones, or that we have
not been able yet to find the best possible deterministic algorithms for these problems.
In general, it is quite an interesting question to determine what is the relative power of
probabilistic and deterministic computations. This question is the main motivations for the
results described in this lecture and the next ones.

23.1.1 A trivial deterministic simulation

Let A be a probabilistic algorithm that solves a decision problem L. On input x of length
n, say that A uses a random string r of length m = m(n) and runs in time T = T (n) (note
that m ≤ T).

It is easy to come up with a deterministic algorithm that solves L in time 2m(n)T (n).
On input x, compute A(x, r) for every r. The correct answer is the one that comes up the
majority of the times, so, in order to solve our problem, we just have to keep track, during
the computation of A(x, r) for every r, of the number of strings r for which A(x, r) = 1 and
the number of strings r for which A(x, r) = 0.

Notice that the running time of the simulation depends exponentially on the number of
random bits used by A, but only polynomially on the running time of A. In particular, if
A uses a logarithmic number of random bits, then the simulation is polynomial. However,
typically, a probabilistic algorithm uses a linear, or more, number of random bits, and so
this trivial simulation is exponential. As we will see in the next section, it is not easy to
obtain more efficient simulations.

23.1.2 Exponential gaps between randomized and deterministic proce-
dures

For some computational problems (e.g. approximating the size of a convex body) there are
probabilistic algorithms that work even if the object on which they operate is exponentially
big and given as a black box; in some cases one can prove that deterministic algorithms

149

cannot solve the same problem in the same setting, unless they use exponential time. Let
us see a particularly clean (but more artificial) example of this situation.

Suppose that there is some function f : {0, 1}n × {0, 1}n → {0, 1} that is given as an
oracle; we want to devise an algorithm that on input x finds an approximation (say, to within
an additive factor 1/10) to the value Pry[f(x, y) = 1]. A probabilistic algorithm would pick
O(1) points y1, . . . , yt at random, evaluate f(x, yi), and then output the fraction of i such
that f(x, yi) = 1. This will be an approximation to within 1/10 with good probability.
However a deterministic subexponential algorithm, given x, can only look at a negligible
fraction of the values f(x, y). Suppose that f is zero everywhere. Now consider the function
g(x, y) that is equal to f on all the points that our algorithm queries, and is 1 elsewhere
(note that, by this definition, the queries of the algorithm on input x will be the same for
f and g). If the algorithm takes sub-exponential time, g is almost everywhere one, yet the
algorithm will give the same answer as when accessing f , which is everywhere zero. If our
algorithm makes less than 2n−1 oracle queries, it cannot solve the problem with the required
accuracy.

23.2 De-randomization Under Complexity Assumptions

It is still not known how to improve, in the general case, the deterministic simulation of
Section 23.1.1, and the observation of Section 23.1.2 shows one of the difficulties in achieving
an improvement. If we want to come up with a general way of transforming probabilistic
procedures into deterministic sub-exponential procedures, the transformation cannot be
described and analyzed by modeling in a “black box” way the probabilistic procedure.1 If
we want to deterministically and sub-exponentially simulate BPP algorithms, we have to
exploit the fact that a BPP algorithm A(·, ·) is not an arbitrary function, but an efficiently
computable one, and this is difficult because we still have a very poor understanding of the
nature of efficient computations.

The results described in these notes show that it is indeed possible to deterministically
simulate probabilistic algorithms in sub-exponential (or even polynomial) time, provided
that certain complexity-theoretic assumptions are true. It is quite usual in complexity
theory that, using reductions, one can show that the answer to some open question is
implied by (or even equivalent to) the answer to some other question, however the nature of
the results of these notes is somewhat unusual. Typically a reduction from a computational
problem A to a problem B shows that if B has an efficient algorithm then A has also an
efficient algorithm, and, by counterpositive, if A is intractable then B is also intractable.
In general, using reductions one shows that algorithmic assumptions imply algorithmic
consequences, and intractability assumptions imply intractability consequences. In these
notes we will see instead that the existence of efficient derandomized algorithms is implied by
the intractability of some other problem, so that a hardness condition implies an algorithm

1More precisely, it is impossible to have a sub-exponential time deterministic “universal derandomization
procedure” that given x and oracle access to an arbitrary function A(·, ·) outputs 1 when Prr[A(x, r) =
1] ≥ 3/4 and outputs 0 when Prr[A(x, r) = 1] ≤ 1/4. In fact, more generally, it is impossible to give
sub-exponential time algorithms for all BPP problems by using “relativizing” techniques. It is beyond the
scope of these notes to explain what this means, and why it is more general. “Relativizations” are discussed
in [Pap94], where it is possible to find pointers to the relevant literature.

150

consequence.
In the next section we will introduce some notation about computational problems and

complexity measures, and then we will state some results about conditional de-randomization.

23.2.1 Formal Definitions of Complexity Measures and Complexity Classes

For a decision problem L and an integer n we denote by Ln the restriction of L to inputs of
length n. It will be convenient to think of Ln as a Boolean function Ln : {0, 1}n → {0, 1}
(with the convention that x ∈ Ln if and only if Ln(x) = 1).

For a function f : {0, 1}n → {0, 1}, consider the size of the smallest circuit that solves
f ; denote this number by CC(f). By definition, we have that if C is a circuit with n inputs
of size less than CC(f) then there exists an x ∈ {0, 1}n such that C(x) 6= f(x).

Consider now, for every n, what is the largest s such that for every circuit C of size ≤ s
we have Prx∈{0,1}n [C(x) = f(x)] ≤ 1/2 + 1/s; denote this number by H(f).

Recall that DTIME(T (n)) is the class of decision problems that can be solved by
deterministic algorithms running in time at most T (n) on inputs of length n. We have the

classes E = DTIME(2O(n)) and EXP = DTIME(2n
O(1)

).

23.2.2 Hardness versus Randomness

From our previous arguments, we have BPP ⊆ EXP. Since there are settings where
probabilistic procedures require exponential time to be simulated, one would conjecture
that BPP 6⊆ 2n

o(1)
; on the other hand, BPP seems to still represent a class of feasible

computations, and it would be very surprising if BPP = EXP. As we will see in a moment,
something is wrong with the above intuition. Either BPP = EXP, which sounds really
impossible, or else it must be the case that BPP has sub-exponential time deterministic
algorithms (that will work well only on average, but that would be quite remarkable enough).

Theorem 106 ([IW98]) Suppose BPP 6= EXP; then for every BPP language L and
every ε > 0 there is a deterministic algorithm A that works in time 2n

ε
and, for infinitely

many n, solves L on a fraction 1− 1/n of the inputs of length n.

This gives a non-trivial simulation of BPP under an uncontroversial assumption. We
can also get an optimal simulation of BPP under an assumption that is much stronger, but
quite believable.

Theorem 107 ([IW97]) Suppose there is a problem L in E and a fixed δ > 0 such that,
for all sufficiently large n, CC(Ln) ≥ 2δn; then P = BPP.

We will call the statement “there is a problem L in E and a fixed δ > 0 such that, for all
sufficiently large n, CC(Ln) ≥ 2δn” the “IW assumption.” Note that if the IW assumption
is true, then it is true in the case where

L = {(M,x, 1k) : machine M halts within 2k steps on input x }
Notice also that L cannot be solved by algorithms running in time 2o(n), and so it would
be a little bit surprising if it could be solvable by circuits of size 2o(n), because it would

151

mean that, for general exponential time computations, non-uniformity buys more than a
polynomial speed-up. In fact it would be very surprising if circuits of size 2.99n existed for
L.

The two theorems that we just stated are the extremes of a continuum of results showing
that by making assumptions on the hardness of problems in E and EXP it is possible to de-
vise efficient deterministic algorithms for all BPP problems. The stronger the assumption,
the more efficient the simulation.

Notice that the assumption in Theorem 107 is stronger than the assumption in Theorem
106 in two ways, and that, similarly, the conclusion of Theorem 107 is stronger than the
conclusion in Theorem 106 in two ways. On the one hand, the assumption in Theorem 107
refers to circuit size, that is, to a non-uniform measure of complexity, whereas the assump-
tion in Theorem 106 uses a uniform measure of complexity (running time of probabilistic
algorithms). This difference accounts for the fact that the conclusion of Theorem 107 gives
an algorithm that works for all inputs, while the conclusion of Theorem 106 gives an algo-
rithm that works only for most inputs. The other difference is that Theorem 107 assumes
exponential hardness, while Theorem 107 assumes only super-polynomial hardness. This
is reflected in the running time of the consequent deterministic simulations (respectively,
polynomial and sub-exponential).

When one makes the non-uniform assumption that there is a problem in E that re-
quires circuits of size s(n), then the consequence is a deterministic simulation of BPP in

time roughly 2s
−1(nO(1)) [ISW99, SU01, Uma02]. So if one assumes that E requires super-

polynomial circuits, BPP can be simulated in time 2n
o(1)

, if one assumes that E requires
circuits of size 2Ω(n) then the simulation runs in time nO(1), if one assumes that E requires

circuits of size nlogn then the simulation runs in time 22
O(
√

logn)
, and so on. The result of

[IW98] does not scale up so well when one is willing to make stronger uniform assumptions.
In particular, the following is an open question.

Conjecture 1 Suppose E 6⊆ ⋂δ>0BPTIME(2δn); then for every BPP language L there
is a deterministic polynomial time algorithm A that, for infinitely many n, solves L on a
fraction 1− 1/n of the inputs of length n.

23.3 Pseudorandom Generators

We say that a function G : {0, 1}t → {0, 1}m is a (s, ε)-pseudorandom generator if for every
circuit D of size ≤ s we have

|Prr[D(r) = 1]−Prz[D(G(z)) = 1]| ≤ ε
Suppose that we have a probabilistic algorithm A such that for inputs x of length

n the computation A(x, ·) can be performed by a circuit of size s(n); suppose that for
every x we have Prr[A(x, r) = right answer] ≥ 3/4, and suppose that we have a (s, 1/8)
pseudorandom generator G : {0, 1}t(n) → {0, 1}m(n). Then we can define a new probabilistic
algorithm A′ such that A′(x, z) = A(x,G(z)). It is easy to observe that for every x we have

Prz[A
′(x, z) = right answer] ≥ 5/8

152

and that, using the trivial derandomization we can get a deterministic algorithm A′′ that
always works correctly and whose running time is 2t times the sum of the running time of
A plus the running time of G.

If t is logarithmic in m and s, and if G is computable in poly(m, s) time, then the
whole simulation runs in deterministic polynomial time. Notice also that if we have a (s, ε)-
pseudorandom generator G : {0, 1}t → {0, 1}m, then for every m′ ≤ m we also have, for a
stronger reason, a (s, ε) pseudorandom generator G′ : {0, 1}t → {0, 1}m′ (G′ just computes
G and omits the last m −m′ bits of the output). So there will be no loss in generality if
we consider only generators for the special case where, say, s = 2m. (This is not really
necessary, but it will help reduce the number of parameters in the statements of theorems.)
We have the following easy theorem.

Theorem 108 Suppose there is a family of generators Gm : {0, 1}O(logm) → {0, 1}m that
are computable in poly(m) time and that are (2m, 1/8)-pseudorandom; then P = BPP.

Of course this is only a sufficient condition. There could be other approaches to proving
(conditionally) P = BPP, without passing through the construction of such strong gener-
ators. Unfortunately we hardly know of any other approach, and anyway the (arguably)
most interesting results are proved using pseudorandom generators.2

23.4 The two main theorems

23.4.1 The Nisan-Wigderson Theorem

Theorem 109 (Special case of [NW94]) Suppose there is L ∈ E and δ > 0 such that,
for all sufficiently large n, H(Ln) ≥ 2δn; then there is a family of generators Gm : {0, 1}O(logm) →
{0, 1}m that are computable in poly(m) time and that are (2m, 1/8)-pseudorandom (in par-
ticular, P = BPP).

Notice the strength of the assumption. For almost every input length n, our problem
has to be so hard that even circuits of size 2δn have to be unable to solve the problem
correctly on more than a fraction 1/2 + 2−δn of the inputs. A circuit of size 1 can certainly
solve the problem on a fraction at least 1/2 of the inputs (either by always outputting 0
or by always outputting 1). Furthermore, a circuit of size 2n always exist that solves the
problem on every input. A circuit of size 2δn can contain, for example, the right solution
to our problem for every input whose first (1− δ)n bits are 0; the circuit can give the right
answer on these 2δn inputs, and answer always 0 or always 1 (whichever is better) on the
other inputs. This way the circuit is good on about a fraction 1/2 + 2−(1−δ)n of the inputs.

2Some exceptions are discussed below. Andreev et al. [ACR98] show that in order to deterministically
simulate probabilistic algorithms it is enough to construct hitting set generators, a seemingly weaker primitive
than a pseudorandom generator. The complicated proof of [ACR98] was simplified in subsequent work
[ACRT99, BF99, GW99]. Andreev et al. [ACR99] also show how to construct hitting set generators, but
only under very strong complexity assumptions. Miltersen and Vinodchandran [MV99] give a very elegant
construction of hitting set generators, but it also requires a stronger hardness assumption than in [IW97]. On
the other hand, [MV99] also gets a stronger conclusion, and, in particular, it is not known how to prove the
main result of [MV99] (about the “derandomization” of two-rounds interactive proofs) using pseudorandom
generators.

153

So, in particular, for every problem, there is a circuit of size 2n/2 that solves the problem on
a fraction 1/2+2−n/2 of the inputs. It is somewhat more tricky to show that there is in fact
even a circuit of size 2(1/3+o(1))n that solves the problem on a fraction 1/2 + 2−(1/3+o(1))n of
the inputs, and this is about best possible for general problems [ACR97].

23.4.2 Worst-case to Average-case Reduction

Theorem 110 ([BFNW93, Imp95a, IW97]) Suppose there is L ∈ E and δ > 0 such
that, for all sufficiently large n, CC(Ln) ≥ 2δn; Then there is L′ ∈ E and δ′ > 0 such that,
for all sufficiently large n, H(L′n) ≥ 2δ

′n.

This is quite encouraging: the (believable) IW assumption implies the (a priori less believ-
able) NW assumption. Notice how Theorem 107 follows from Theorems 109 and 110.

The results on polynomial reconstruction from Lecture 10 imply Theorem 110, although
this is not the way it was originally proved. Our proof followed [STV01].

154

Lecture 24

The Nisan-Wigderson Generator

These notes follow quite literally the notes that I wrote for the PCMI school on computational
complexity in Summer 2000. There is some redundancy between these notes and the content
of past lectures.

In this lecture we prove Theorem 109.

24.1 The Nisan-Wigderson Construction

The Nisan-Wigderson generator is based on the existence of a decision problem L in E such
that for almost every input length l we have H(Ll) ≥ 2δl, yet there is a uniform algorithm
that solves Ll in 2O(l) time. Our goal is to use these assumptions on Ll to build a generator
whose input seed is of length O(l), whose output is of length 2Θ(l) and indistinguishable
from uniform by adversaries of size 2Θ(l), and the generator should be computable in time
2O(l).

As we will see in a moment, it is not too hard to construct a generator that maps l bits
into l + 1 bits, and whose running time and pseudorandomness are as required. We will
then present the Nisan-Wigderson construction, and present its analysis.

24.1.1 Impredictability versus Pseudorandomness

Let f : {0, 1}l → {0, 1} be a function such that H(f) ≥ s, and consider the pseudorandom
generator G : {0, 1}l → {0, 1}l+1 defined as G(x) = x · f(x), where ‘·’ is used to denote
concatenation. We want to argue that G is a (s− 3, 1/s)-pseudorandom generator.

The argument works by contradiction, and consists in the proof of the following result.

Lemma 111 Let f : {0, 1}l → {0, 1}. Suppose that there is a circuit D of size s such that

|Prx[D(x · f(x)) = 1]−Prx,b[D(x · b) = 1]| > ε

then there is a circuit A of size s+ 3 such that

Prx[A(x) = f(x)] >
1

2
+ ε

155

Proof: First of all, we observe that there is a circuit D′ of size at most s+ 1 such that

Prz[D
′(x · f(x)) = 1]−Prx,b[D′(x · b) = 1] > ε (24.1)

This is because Expression (24.1) is satisfied either by taking D = D′ or by taking D = ¬D′.
A way to interpret Expression (24.1) is to observe that when the first l bits of the input of
D′() are a random string x, D′ is more likely to accept if the last bit is f(x) than if the
last bit is random (and, for a stronger reason, if the last bit is 1− f(x)). This observation
suggests the following strategy in order to use D′ to predict f : given an input x, for which
we want to compute f(x), we guess a value b, and we compute D′(x, b). If D′(x, b) = 1,
we take it as evidence that b was a good guess for f(x), and we output b. If D′(x, b) = 0,
we take it as evidence that b was the wrong guess, and we output 1 − b. Let Ab be the
procedure that we just described. We claim that

Prx,b[Ab(x) = f(x)] >
1

2
+ ε (24.2)

The claim is proved by the following derivation

Prx,b[Ab(x) = f(x)]

= Prx,b[Ab(x) = f(x)|b = f(x)]Prx,b[b = f(x)]

+Prx,b[Ab(x) = f(x)|b 6= f(x)]Prx,b[b 6= f(x)]

=
1

2
Prx,b[Ab(x) = f(x)|b = f(x)] +

1

2
Prx,b[Ab(x) = f(x)|b 6= f(x)]

=
1

2
Prx,b[D

′(x, b) = 1|b = f(x)] +
1

2
Prx,b[D

′(x, b) = 0|b 6= f(x)]

=
1

2
+

1

2
Prx,b[D

′(x, b) = 1|b = f(x)]− 1

2
Prx,b[D

′(x, b) = 1|b 6= f(x)]

=
1

2
+Prx,b[D

′(x, b) = 1|b = f(x)]

−1

2

(
Prx,b[D

′(x, b) = 1|b = f(x)] +Prx,b[D
′(x, b) = 1|b 6= f(x)]

)

=
1

2
+Prx[D′(x, f(x)) = 1]−Prx,b[D′(x, b) = 1]

>
1

2
+ ε

From Expression (24.2) we can observe that there must be a b0 ∈ {0, 1} such that

Prx[Ab0(x) = f(x)] >
1

2
+ ε

And Ab0 is computed by a circuit of size at most s+ 3 because Ab0(x) = b0 ⊕ (¬D′(x, b0)),
which can be implemented with two more gates given a circuit for D′. 2

24.1.2 Combinatorial Designs

Consider a family (S1, . . . , Sm) of subsets of an universe U . We say the family is a (l, α)-
design if, for every i, |Si| = l, and, for every i 6= j, |Si ∩ Sj | ≤ α.

156

Theorem 112 For every integer l, fraction γ > 0, there is an (l, logm) design (S1, . . . , Sm)
over the universe [t], where t = O(l/γ) and m = 2γl; such a design can be constructed in
O(2ttm2) time.

We will use the following notation: if z is a string in {0, 1}t and S ⊂ [t], then we denote
by z|S the string of length |S| obtained from z by selecting the bits indexed by S. For
example if z = (0, 0, 1, 0, 1, 0) and S = {1, 2, 3, 5} then z|S = (0, 0, 1, 1).

24.1.3 The Nisan-Wigderson Generator

For a Boolean function f : {0, 1}l → {0, 1}, and a design S = (S1, . . . , Sm) over [t], the
Nisan-Wigderson generator is a function NWf,S : {0, 1}t → {0, 1}m defined as follows:

NWf,S(z) = f(z|S1
) · f(z|S2

) · · · f(z|Sm)

24.2 The Reduction from Distinguishing to Predicting

The following lemma implies Theorem 109.

Lemma 113 Let f : {0, 1}l → {0, 1} be a Boolean function and S = (S1, . . . , Sm) be a
(l, logm) design over [t]. Suppose D : {0, 1}m → {0, 1} is such that

|Prr[D(r) = 1]−Prz[D(NWf,S(z)) = 1]| > ε .

Then there exists a circuit C of size O(m2) such that

|Prx[D(C(x)) = f(x)]− 1/2| ≥ ε

m

Proof: The main idea is that if D distinguishes NWf,S(·) from the uniform distribution,
then we can find a bit of the output of the generator where this distinction is noticeable.
On such a bit, D is distinguishing f(x) from a random bit, and such a distinguisher can
be turned into a predictor for f . In order to find the “right bit”, we will use the hybrid
argument. At this level of abstraction, the analysis is the same as the analysis of the
Blum-Micali-Yao generator, however, as the analysis unfolds, we will see major differences.

Let us start with the hybrid argument. We define m + 1 distributions H0, . . . , Hm; Hi

is defined as follows: sample a string v = NWf,S(z) for a random z, and then sample a
string r ∈ {0, 1}m according to the uniform distribution, then concatenate the first i bits of
v with the last m− i bits of r. By definition, Hm is distributed as NWf,S(y) and H0 is the
uniform distribution over {0, 1}m.

Using the hypothesis of the Lemma, we know that there is a bit b0 ∈ {0, 1} such that

Pry[D
′(NWf,S(y)) = 1]−Prr[D′(r)] > ε

where D′(x) = b0 ⊕D(x).

157

We then observe that

ε ≤ Prz[D
′(NWf,S(z)) = 1]−Prr[D′(r)]

= Pr[D′(Hm) = 1]−Pr[D′(H0) = 1]

=

m∑

i=1

(Pr[D′(Hi) = 1]−Pr[D′(Hi−1) = 1])

In particular, there exists an index i such that

Pr[D′(Hi) = 1]−Pr[D′(Hi−1) = 1] ≥ ε/m (24.3)

Now, recall that
Hi−1 = f(z|S1

) · · · f(z|Si−1
)riri+1 · rm

and
Hi = f(z|S1

) · · · f(y|Si−1
)f(y|Si)ri+1 · rm .

We can assume without loss of generality (up to a renaming of the indices) that Si =
{1, . . . , l}. Then we can see z ∈ {0, 1}t as a pair (x, y) where x = z|Si ∈ {0, 1}l and

y = z|[t]−Si ∈ {0, 1}t−l. For every j < i and z = (x, y), let us define fj(x, y) = f(z|Sj): note
that fj(x, y) depends on |Si ∩ Sj | ≤ logm bits of x and on l − |Si ∩ Sj | ≥ l − logm bits of
y. With this notation we have

Prx,y,ri+1,...,rm [D′(f1(x, y), . . . , fi−1(x, y), f(x), . . . , rm) = 1]

−Prx,y,ri+1,...,rmD
′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1] > ε/m

That is, when D′ is given a string that contains fj(x, y) for j < i in the first i− 1 entries,
and random bits in the last m − i entries, then D′ is more likely to accept the string if it
contains f(x) in the i-th entry than if it contains a random bit in the i-th entry. This is
good enough to (almost) get a predictor for f . Consider the following algorithm:

Algorithm A
Input: x ∈ {0, 1}l
Pick random ri, . . . , rm ∈ {0, 1}
Pick random y ∈ {0, 1}t−l
Compute f1(x, y), . . . , fi−1(x, y)
If D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1 output ri
Else output 1− ri

Let us forget for a moment about the fact that the step of computing f1(x, y), . . . , fi−1(x, y)
looks very hard, and let us check thatA is good predictor. Let us denote byA(x, y, r1, . . . , rm)

158

the output of A on input x and random choices y, r1, . . . , rm.

Prx,y,r[A(x, y, r) = f(x)]

= Prx,y,r[A(x, y, r) = f(x)|ri = f(x)]Prx,ri [ri = f(x)]

+Prx,y,r[A(x, y, r) = f(x)|ri 6= f(x)]Prx,ri [ri 6= f(x)]

=
1

2
Prx,y,r[D

′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = ri]

+
1

2
Prx,y,r[D

′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 0|f(x) 6= ri]

=
1

2
+

1

2

(
Prx,y,r[D

′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

−Prx,y,r[D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) 6= b]
)

=
1

2
+Prx,y,r[D

′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

−1

2

(
Prx,y,r[D

′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

+Prx,y,r[D
′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) 6= b]

)

=
1

2
+Pr[D′(Hi) = 1]−Pr[D′(Hi−1) = 1]

≥ 1

2
+

ε

m

So A is good, and it is worthwhile to see whether we can get an efficient implementation.
We said we have

Prx,y,ri,...,rm [A(x, y, r) = f(x)] ≥ 1

2
+

ε

m

so there surely exist fixed values ci, . . . , cm to give to ri, . . . , rm, and a fixed value w to give
to y such that

Prx,r[A(x,w, ci, ci+1, . . . , cm) = f(x)] ≥ 1

2
+

ε

m

At this point we are essentially done. Since w is fixed, now, in order to implement A, we only
have to compute fj(x,w) given x. However, for each j, fj(x,w) is a function that depends
only on ≤ logm bits of x, and so is computable by a circuits of size O(m). Even composing
i−1 < m such circuit, we still have that the sequence f1(x,w), . . . , fi−1(x,w), ci, ci+1, . . . , cm
can be computed, given x, by a circuit C of size O(m2). Finally, we notice that at this point
A(x,w, c) is doing the following: output the xor between ci and the complement of D′(C(x)).
Since ci is fixed, either A(x,w, c) always equals D(C(x)), or one is the complement of the
other. In either case the Lemma follows. 2

At this point it should not be too hard to derive Theorem 109.

159

Lecture 25

Extractors and Pseudorandom
Generators

25.1 Use of Weak Random Sources

Suppose that we have a probabilistic algorithm A(·, ·) that on inputs of length n runs in
time T (n) and uses m(n) random bits. Instead of a perfect source of randomness, we
assume that we have a source that produces an output containing some “impredictability,”
but that can still be very far from uniform. A very general way of modeling this source is
to assume that on input 1N it outputs a string in {0, 1}N , and that the output string has
“some randomness” (a notion that we will formalize and quantify in a moment). Typically,
a good way to quantify the amount of randomness, or impredictability, in a distribution,
is to compute its (Shannon) entropy. For a random variable X whose range is {0, 1}N , its
entropy is defined as H(X) =

∑

a∈{0,1}N Pr[X = a] log(1/Pr[X = a]),
Shannon entropy is a very good measure in cases where one is allowed to take multiple

samples from the distribution, but in our setting this is not the best measure. Consider
for example a distribution X such that X = (0, 0, · · · , 0) with probability 1 − 1/

√
N , and

it is uniform with probability 1/
√
N . Then its Shannon entropy is about

√
N , which is

quite high, yet it is almost always a useless string of zeroes. It is a good intuition to
think that the amount of randomness contained in the outcome a of a random variable X is
log 1/Pr[X = a]. If X has Shannon entropy k, then on average, when we sample from X we
get a value of “randomness” k, however it can be the case that with very high probability we
get almost zero randomness, and with low probability we get high randomness. We would
rather have a measure of randomness that guarantees to have almost always, or, even better,
always, high randomness. This motivates the definition of min-entropy: a random variable
X has min-entropy at least k if for every a in the range of X we have Pr[X = a] ≤ 1/2k.
That is, the min-entropy of X is mina{log 1/Pr[X = a]}.

Definition 31 A random variable with range {0, 1}N having min-entropy at least k will be
called a (N, k)-source.

Given one access to a (N, k) source, we would like to be able to simulate any probabilistic
algorithm that uses m random bits, where m is close to k. If the simulation is “black box”

160

and takes time T , one can argue that m ≤ k+O(log T). We will not define formally what a
black-box simulation is, but we will develop simulations that are black box, so it will come
as no surprise that our simulations will work only for m smaller than k, in fact only for m
smaller than k1/3. (This is partly due to oversimplifications in the analysis; one could get
k.99 with almost the same proof.)

25.2 Extractors

An extractor is a function that transforms a (N, k) source into an almost uniform distri-
bution. The transformation is done by using a (typically very small) number of additional
random bits.

Formally, we have the following definition.

Definition 32 For two random variables X and Y with range {0, 1}m, their variational
distance is defined as ||X−Y || = maxS⊆{0,1}m{|Pr[X ∈ S]−Pr[Y ∈ S]|}. We say that two
random variables are ε-close if their variational distance is at most ε.

Definition 33 A function Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (k, ε) extractor if for any
(N, k) source X we have that Ext(X,Ul) is ε-close to uniform, where Ul is the uniform
distribution over {0, 1}l.

Equivalently, if Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (k, ε) extractor, then for every
distribution X ranging over {0, 1}N of min-entropy k, and for every S ⊆ {0, 1}m, we have

|Pra∈X,z∈{0,1}t [Ext(a, z) ∈ S]−Prr∈{0,1}m [r ∈ S]| ≤ ε

25.3 Applications

See [Nis96] for an extensive survey. Here we present only one application. Another notable
application is the construction of expanders.

Suppose that A(·, ·) is a probabilistic algorithm that on an input of length n uses m(n)
random bits, and suppose that for every x we have Prr[A(x, r) = right answer] ≥ 3/4.
Suppose Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (k, 1/4)-extractor.

Consider the following algorithm A′: on input x ∈ {0, 1}n and weakly random a ∈
{0, 1}N , A′ computes A(x,Ext(a, z)) for every z ∈ {0, 1}t, and then it outputs the answer
that appears the majority of such 2t times. We want to argue that A′ is correct with high
probability if a is sampled from a weak random source of entropy slightly higher than k.
Let us fix the input x. Consider the set B of strings a ∈ {0, 1}N for which the algorithm
A′ makes a mistake:

B = {a : Prz∈{0,1}t [A(x,Ext(a, z)) = right answer] < 1/2}
Consider the random variable X that is uniformly distributed over B (clearly, X has min-
entropy logB). Then we have

Pra∈X,z∈{0,1}t [A(x,Ext(a, z)) = right answer] < 1/2

161

and so

|Pra∈X,z∈{0,1}t [A(x,Ext(a, z)) = right answer]−Prr[A(x, r) = right answer]| > 1/4

and then it follows form the property of Ext that X must have min-entropy less than k,
that is |B| ≤ 2k.

Let now X be a (N, k + 2)-source, and let us execute algorithm A′ using X. Then

Pra∈X,z∈{0,1}t [A(x,Ext(a, z)) = right answer] = 1−Pra∈X [a ∈ B] ≥ 3/4

More generally

Theorem 114 Suppose A is a probabilistic algorithm running in time TA(n) and using
m(n) random bits on inputs of length n. Suppose we have for every m(n) a construction
of a (k(n), 1/4)-extractor Extn : {0, 1}N × {0, 1}t(n) → {0, 1}m(n) running in TE(n) time.
Then A can be simulated in time 2t(TA + TE) using one sample from a (N, k + 2) source.

25.4 An Extractor from Nisan-Wigderson

This is a simplified presentation of results in [Tre01] (see also [RRV99, ISW00]).
Let C : {0, 1}N → {0, 1}N̄ be a polynomial time computable error-correcting code such

that any ball of radius at most 1/2− δ contains at most 1/δ2 codewords. Such a code exists
with n̄ = poly(n, 1/δ).

For a string x ∈ {0, 1}N̄ , let < x >: {0, 1}log N̄ → {0, 1} be the function whose truth
table is x. Let l = log N̄ , and let S = (S1, . . . , Sm) be a (l, logm) design over [t]. Then
consider the procedure ExtNW : {0, 1}N × {0, 1}t → {0, 1}m defined as

ExtNWC,S(x, z) = NW<C(x)>,S(z) .

That is, ExtNW first encodes its first input using an error-correcting code, then views it as
a function, and finally applies the Nisan-Wigderson construction to such a function, using
the second input as a seed.

Lemma 115 For sufficiently large m and for ε > 2−m
2
, ExtNWC,S is a (m3, 2ε)-extractor.

Proof: Fix a random variable X of min-entropy m3 and a function D : {0, 1}m → {0, 1};
we will argue that

|Pr[D(r) = 1]−Pra∈X,z∈{0,1}t [D(ExtNW (a, z)) = 1]| ≤ 2ε

Let us call a value a bad if it happens that

|Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]| > ε

and let us call B the set of bad a. When a is bad, it follows that there is a circuit C of size
O(m2) such that either D(C()) or its complement agrees with a on a fraction 1/2 + ε/m of
its entries. Therefore, a is totally specified by D, C, and 2 log(m/ε) additional bits (once
we have D and C, we know that the encoding of a sits in a given sphere of radius 1/2−ε/m,

162

together with at most other (m/ε)2 codewords). Therefore, for a fixed D, the size of B is
upper bounded by the number of circuits of size O(m2), that is 2O(m2 logm), times (m/ε)2,
times 2. The total is 2O(m2 logm). The probability that an element a taken from X belongs
to B is therefore at most 2−m

3 · 2O(m2 logm) < ε for sufficiently large m. We then have

|Pr[D(r) = 1]−Pra∈X,z∈{0,1}t [D(ExtNW (a, z)) = 1]|
≤

∑

a

Pr[X = a]
∣
∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]

∣
∣

≤ Pr[X ∈ B] + ε ≤ 2ε

2

Theorem 116 Fix a constant ε; for every N and k = NΩ(1) there is a polynomial-time
computable (k, ε)-extractor Ext : {0, 1}N × {0, 1}t → {0, 1}m where m = k1/3 and t =
O(logN).

163

Bibliography

[ACR97] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. Optimal bounds for the ap-
proximation of boolean functions and some applications. Theoretical Computer
Science, 180:243–268, 1997.

[ACR98] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandom-
ization method. Journal of the ACM, 45(1):179–213, 1998.

[ACR99] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. Worst-case hardness suffices
for derandomization: A new method for hardness vs randomness trade-offs.
Theoretical Computer Science, 221:3–18, 1999.

[ACRT99] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan. Weak random
sources, hitting sets, and BPP simulations. SIAM Journal on Computing,
28(6):2103–2116, 1999. Preliminary version in Proc of FOCS’97.

[Adl78] Leonard Adleman. Two theorems on random polynomial time. In Proceedings
of the 19th IEEE Symposium on Foundations of Computer Science, pages 75–
83, 1978.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and hardness of approximation problems. Journal of the ACM, 45(3):501–555,
1998. Preliminary version in Proc. of FOCS’92.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization
of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in Proc.
of FOCS’92.

[ATSWZ97] R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou. SL ⊆ L 4
3 . In Proceedings

of the 29th ACM Symposium on Theory of Computing, pages 230–239, 1997.

[Bab85] L. Babai. Trading group theory for randomness. In Proceedings of the
17th ACM Symposium on Theory of Computing, pages 421–429, 1985. See
also [BM88].

[BCH+96] M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi, and M. Sudan. Linearity
testing over characteristic two. IEEE Transactions on Information Theory,
42(6):1781–1795, 1996.

164

[BCW80] Manuel Blum, Ashok K. Chandra, and Mark N. Wegman. Equivalence of free
boolean graphs can be decided probabilistically in polynomial time. Informa-
tion Processing Letters, 10(2):80–82, 1980.

[BDCGL92] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the
theory of average case complexity. Journal of Computer and System Sciences,
44(2):193–219, 1992.

[BF90] Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries.
In Proceedings of STACS’90, pages 37–48, 1990.

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic
computation. In STACS’99, pages 100–109, 1999.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3(4):307–318, 1993.

[BGS98] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCP’s and non-
approximability – towards tight results. SIAM Journal on Computing,
27(3):804–915, 1998. Preliminary version in Proc. of FOCS’95.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–
595, 1993. Preliminary version in Proc. of STOC’90.

[BM88] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and
a hierarchy of complexity classes. Journal of Computer and System Sciences,
36:254–276, 1988.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow: Resolution made
simple. Journal of the ACM, 48(2), 2001.

[Coo71] S.A. Cook. The complexity of theorem proving procedures. In Proceedings of
the 3rd ACM Symposium on Theory of Computing, pages 151–158, 1971.

[Coo73] Stephen A Cook. A hierarchy for nondeterministic time complexity. Journal
of Computer and System Sciences, 7(4):343–353, 1973.

[FF93] Joan Feigenbaum and Lance Fortnow. On the random-self-reducibility of com-
plete sets. SIAM Journal on Computing, 22:994–1005, 1993.

[FGL+96] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs
and the hardness of approximating cliques. Journal of the ACM, 43(2):268–
292, 1996. Preliminary version in Proc. of FOCS91.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[Gil77] J. Gill. Computational complexity of probabilistic Turing machines. SIAM
Journal on Computing, 6:675–695, 1977.

165

[GLR+91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In Proceed-
ings of the 23rd ACM Symposium on Theory of Computing, pages 32–42, 1991.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of in-
teractive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.
Preliminary version in Proc of STOC’85.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity. Journal of the ACM, 38(3), 1991.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR lemma. Technical
Report TR95-50, Electronic Colloquium on Computational Complexity, 1995.

[Gol97] Oded Goldreich. Notes on Levin’s theory of average-case complexity. Technical
Report TR97-058, Electronic Colloquium on Computational Complexity, 1997.

[GS86] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive
proof systems. In Proceedings of the 18th ACM Symposium on Theory of
Computing, pages 59–68, 1986.

[GW99] O. Goldreich and A. Wigderson. Improved derandomization of BPP using a
hitting set generator. In RANDOM’99, pages 131–137, 1999.

[Hak85] A. Haken. The intractibility of resolution. Theoretical Computer Science,
39:297–308, 1985.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In
Proceedings of the 18th ACM Symposium on Theory of Computing, pages 6–
20, 1986.

[H̊as99] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182:105–142, 1999.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,
1999.

[HS65] J. Hartmanis and R.E. Stearns. On the computational complexity of algo-
rithms. Transactions of the AMS, 117:285–306, 1965.

[IL90] Russell Impagliazzo and Leonid Levin. No better ways to generate hard NP
instances than picking uniformly at random. In Proceedings of the 31st IEEE
Symposium on Foundations of Computer Science, pages 812–821, 1990.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17:935–938, 1988.

166

[Imp95a] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In
Proceedings of the 36th IEEE Symposium on Foundations of Computer Science,
pages 538–545, 1995.

[Imp95b] Russell Impagliazzo. A personal view of average-case complexity. In Proceed-
ings of the 10th IEEE Conference on Structure in Complexity Theory, pages
134–147, 1995.

[ISW99] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of
hardness into pseudo-randomness. In Proceedings of the 40th IEEE Symposium
on Foundations of Computer Science, 1999.

[ISW00] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random
generators with optimal seed length. In Proceedings of the 32nd ACM Sympo-
sium on Theory of Computing, pages 1–10, 2000.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP unless E has sub-exponential
circuits. In Proceedings of the 29th ACM Symposium on Theory of Computing,
pages 220–229, 1997.

[IW98] R. Impagliazzo and A. Wigderson. Randomness versus time: De-randomization
under a uniform assumption. In Proceedings of the 39th IEEE Symposium on
Foundations of Computer Science, pages 734–743, 1998.

[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation
of combinatorial structures from a uniform distribution. Theoretical Computer
Science, 43:169–188, 1986.

[Kar72] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and
J.W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

[KL80] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uni-
form complexity classes. In Proceedings of the 12th ACM Symposium on Theory
of Computing, pages 302–309, 1980.

[KZ97] B. Karloff and U. Zwick. A (7/8−ε)-approximation algorithm for MAX 3SAT?
In Proceedings of the 38th IEEE Symposium on Foundations of Computer Sci-
ence, pages 406–415, 1997.

[Lau83] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing
Letters, 17:215–217, 1983.

[Lev73] L. A. Levin. Universal search problems. Problemi Peredachi Informatsii, 9:265–
266, 1973.

[Lev86] Leonid Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986.

167

[Lev87] Leonid Levin. One-way functions and pseudorandom generators. Combinator-
ica, 7(4):357–363, 1987.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for inter-
active proof systems. Journal of the ACM, 39(4):859–868, 1992. Preliminary
version in Proc of FOCS’90.

[Lip90] Richard J. Lipton. Efficient checking of computations. In Proceedings of
STACS’90, pages 207–215, 1990.

[MV99] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlin games
using hitting sets. In Proceedings of the 40th IEEE Symposium on Foundations
of Computer Science, pages 71–80, 1999.

[Nis94] N. Nisan. RL ⊆ SC. Computational Complexity, 4(1), 1994.

[Nis96] N. Nisan. Extracting randomness: How and why. In Proceedings of the 11th
IEEE Conference on Computational Complexity, pages 44–58, 1996.

[NSW92] N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in
O(log1.5 n) space. In Proceedings of the 33rd IEEE Symposium on Founda-
tions of Computer Science, pages 24–29, 1992.

[NW94] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Com-
puter and System Sciences, 49:149–167, 1994. Preliminary version in Proc.
of FOCS’88.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Raz87] A.A. Razborov. Lower bounds on the size of bounded depth networks over a
complete basis with logical addition. Matematicheskie Zametki, 41:598–607,
1987.

[Raz98] R. Raz. A parallel repetition theorem. SIAM Journal on Computing,
27(3):763–803, 1998. Preliminary version in Proc. of STOC’95.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and
reducing the error in Trevisan’s extractors. In Proceedings of the 31st ACM
Symposium on Theory of Computing, pages 149–158, 1999.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–192,
1970.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM, 27:701–717, 1980.

[Sha92] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992. Pre-
liminary version in Proc of FOCS’90.

168

[Sip83] M. Sipser. A complexity theoretic apprach to randomness. In Proceedings of
the 15th ACM Symposium on Theory of Computing, pages 330–335, 1983.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for
boolean circuit complexity. In Proceedings of the 19th ACM Symposium on
Theory of Computing, pages 77–82, 1987.

[Sto76] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3:1–22, 1976.

[Sto83] L.J. Stockmeyer. The complexity of approximate counting. In Proceedings of
the 15th ACM Symposium on Theory of Computing, pages 118–126, 1983.

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the
XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[SU01] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new
pseudo-random generator. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science, pages 648–657, 2001.

[Sud97] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction
bound. Journal of Complexity, 13(1):180–193, 1997. Preliminary version in
Proc. of FOCS’96.

[SZ95] M. Saks and S. Zhou. RSPACE(S) ⊆ DSPACE(S3/2). In Proceedings of the
36th IEEE Symposium on Foundations of Computer Science, pages 344–353,
1995.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic au-
tomata. Acta Informatica, 26:279–284, 1988.

[Tre01] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001.

[Tse70] G. S. Tseitin. On the complexity of derivation in propositional calculus. In
A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathematical
Logic, pages 115–125, 1970.

[Uma02] C. Umans. Pseudo-random generators for all hardnesses. In Proceedings of the
34th ACM Symposium on Theory of Computing, pages 627–634, 2002.

[Val79] L.G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8:189–201, 1979.

[VV86] L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions.
Theoretical Computer Science, 47:85–93, 1986.

[WB86] L.R. Welch and E.R. Berlekamp. Error-correction for algebraic block codes.
US Patent No. 4,633,470, 1986.

169

[Wra76] C. Wrathall. Complete sets for the polynomial hierarchy. Theoretical Computer
Science, 3:23–34, 1976.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of
the 23th IEEE Symposium on Foundations of Computer Science, pages 80–91,
1982.

[Yao85] Andrew C Yao. Separating the polynomial-time hierarchy by oracles. In Pro-
ceedings of the 26th IEEE Symposium on Foundations of Computer Science,
pages 1–10, 1985.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings
of the International Symposiumon on Symbolic and Algebraic Computation,
pages 216 – 226. Springer-Verlag, 1979.

170

